(1)求函數(shù)y=g(x)的解析式及定義域M;
(2)證明:函數(shù)y=g(x)為M上的利普希茨I類函數(shù);
(3)若A、B為C2上兩點(diǎn),求證:直線AB與直線y=x相交.
答案:(1)解:∵函數(shù)y=g(x)的圖象C2與C1關(guān)于直線y=x對(duì)稱,∴y=f(x)與y=g(x)互為反函數(shù).∴y=g(x)的解析式為g(x)=,定義域M為\[0,+∞).
(2)證明:對(duì)任意的x1,x2∈M,且x1≠x2,x1≥0,x2≥0,
則|g(x1)-g(x2)|=|x1-x2|,
所以函數(shù)y=g(x)為M上的利普希茨I類函數(shù).
(3)證明:設(shè)A(x1,y1),B(x2,y2)是曲線C2上不同兩點(diǎn),x1,x2∈M,且x1≠x2,由(2)知,
|kAB|=||=||<<1,所以直線AB的斜率kAB≠1,而直線y=x的斜率為1,∴它們相交.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù)y=f(x),若x1+x2=1, 則f(x1)+f(x2)=1,記數(shù)列f(),f(),
……,f()……,(n≥2,n∈)的前n項(xiàng)的和為Sn ;
(1)求Sn;
(2)若a=,a= (n≥2,n∈),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù)y=f(x),若x1+x2=1, 則f(x1)+f(x2)=1,記數(shù)列f(),f(),
……,f()……,(n≥2,n∈)的前n項(xiàng)的和為Sn ;
(1)求Sn;
(2)若a=,a= (n≥2,n∈),
數(shù)列{an}的前n項(xiàng)和為Tn, Tn≤λ(Sn+1+1)對(duì)一切n∈都成立,試求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù)y=f(x),若x1+x2=1, 則f(x1)+f(x2)=1,記數(shù)列f(),f(),
……,f()……,(n≥2,n∈)的前n項(xiàng)的和為Sn ;
(1)求Sn;
(2)若a=,a= (n≥2,n∈),
數(shù)列{an}的前n項(xiàng)和為Tn, Tn≤λ(Sn+1+1)對(duì)一切n∈都成立,試求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分16分)設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=x2(1-x).
(Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;
(Ⅱ)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤;
(Ⅲ)對(duì)于函數(shù)y=f(x)(x∈[0,+∞,若在它的圖象上存在點(diǎn)P,使經(jīng)過(guò)點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com