設(shè)函數(shù)f(x)在(-∞,+∞)上滿足f(x)=f(4-x),f(7-x)=f(7+x),且在閉區(qū)間[0,7]上,只有f(1)=f(3)=0,則函數(shù)f(x)的最小正周期為________,方程f(x)=0在閉區(qū)間[-2005,2005]上有________個根.

10    802
分析:根據(jù)滿足f(x)=f(4-x),f(7-x)=f(7+x),可得f(x)=f(x+10),從而得出函數(shù)f(x)的最小正周期;由周期函數(shù)性質(zhì)可知,只需求出一個周期里的根的個數(shù),可求得f(x)在[0,10]和[-10,0]上均有有兩個解,從而可知函數(shù)y=f(x)在[0,2005]上有402個解,在[-2005,0]上有400個解,綜合可得答案.
解答:由 f(x)在R上滿足f(x)=f(4-x),f(7-x)=f(7+x),
?f(x)=f(4-x),f(x)=f(14-x)
?f(4-x)=f(14-x)?f(x)=f(x+10)
故函數(shù)f(x)的最小正周期為 10.
又f(3)=f(1)=0?f(11)=f(13)=f(-7)=f(-9)=0
故f(x)在[0,10]和[-10,0]上均有有兩個解,
從而可知函數(shù)y=f(x)在[0,2005]上有402個解,在[-2005,0]上有400個解,
所以函數(shù)y=f(x)在[-2005,2005]上有802個解.
故答案為:10,802.
點評:本題主要考查了函數(shù)的周期性和根的存在性及根的個數(shù)判斷,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

12、設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),若滿足
f(a)•f(b)≤0
,則方程f(x)=0在區(qū)間[a,b]上一定有實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)在R上有定義,下列函數(shù):①y=-|f(x)|;②y=|x|•f(x2);③y=-f(-x);④y=f(x)+f(-x)
其中偶函數(shù)的有
②④
②④
.(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函數(shù)f(x)定義為:對每個給定的實數(shù)x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)對所有實數(shù)x都成立,求a的取值范圍;
(2)設(shè)t∈R,t>0,且f(0)=f(t).設(shè)函數(shù)f(x)在區(qū)間[0,t]上的單調(diào)遞增區(qū)間的長度之和為d(閉區(qū)間[m,n]的長度定義為n-m),求
d
t
;
(3)設(shè)g(x)=x2-2bx+3.當a=2時,若對任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•保定一模)設(shè)函數(shù)f(x)在R上是可導(dǎo)的偶函數(shù),且滿足f (x-1)=-f (x+1),則曲線y=f (x)在點x=10處的切線的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax2+bx.
(Ⅰ)當a=0,b=-1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)f(x)在點P(t,f(t))(0<t<1)處的切線為l,直線l與y軸相交于點Q.若點Q的縱坐標恒小于1,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案