【題目】已知函數(shù)在x=-1與x=2處都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求c的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)函數(shù)在極值點的導(dǎo)數(shù)為零,利用求,再利用導(dǎo)數(shù)的正負求其單調(diào)區(qū)間(2)利用函數(shù)單調(diào)性,分析的最大值,只需即可.
(1)f′(x)=3x2+2ax+b,由題意得
即解得
∴f(x)=x3-x2-6x+c,f′(x)=3x2-3x-6.
令f′(x)<0,解得-1<x<2;
令f′(x)>0,解得x<-1或x>2.
∴f(x)的減區(qū)間為(-1,2),
增區(qū)間為(-∞,-1),(2,+∞).
(2)由(1)知,f(x)在(-∞,-1)上單調(diào)遞增;在(-1,2)上單調(diào)遞減;在(2,+∞)上單調(diào)遞增.
∴x∈時,f(x)的最大值即為:f(-1)與f(3)中的較大者.
f(-1)=+c,f(3)=-+c.
∴當x=-1時,f(x)取得最大值.
要使f(x)+c<c2,只需c2>f(-1)+c,即2c2>7+5c,解得c<-1或c>.
∴c的取值范圍為(-∞,-1)∪.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點,且圓心在直線上,過點的直線交圓于兩點,過點分別做圓的切線,記為.
(Ⅰ)求圓的方程;
(Ⅱ)求證:直線的交點都在同一條直線上,并求出這條直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)所給的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關(guān)系?附:獨立檢驗臨界值表
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(12分)
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sin(x+ ),1), =(4,4cosx﹣ )
(1)若 ⊥ ,求sin(x+ )的值;
(2)設(shè)f(x)= ,若α∈[0, ],f(α﹣ )=2 ,求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某書店共有韓寒的圖書6種,其中價格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據(jù)統(tǒng)計每套的售價與每天的銷售數(shù)量如下表所示:
售價x/元 | 105 | 108 | 110 | 112 |
銷售數(shù)量y/套 | 40 | 30 | 25 | 15 |
(1)根據(jù)上表,利用最小二乘法得到回歸直線方程,求;
(2)若售價為100元,則每天銷售的套數(shù)約為多少(結(jié)果保留到整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日至24日,中國共產(chǎn)黨第十九次全國人民代表大會在北京順利召開.大會期間,北京某高中舉辦了一次“喜迎十九大”的讀書讀報知識競賽,參賽選手為從高一年級和高二年級隨機抽取的各100名學(xué)生.圖1和圖2分別是高一年級和高二年級參賽選手成績的頻率分布直方圖.
(1)分別計算參加這次知識競賽的兩個年級學(xué)生的平均成績;
(2)若稱成績在68分以上的學(xué)生知識淵博,試以上述數(shù)據(jù)估計該高一、高二兩個年級學(xué)生的知識淵博率;
(3)完成下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下,認為高一、高二兩個年級學(xué)生這次讀書讀報知識競賽的成績有差異.
分類 | 成績低于60分人數(shù) | 成績不低于60分人數(shù) | 總計 |
高一年級 | |||
高二年級 | |||
總計 |
附:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
K2=.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com