【題目】若函數(shù)在定義域內(nèi)的某個(gè)區(qū)間上是增函數(shù),且上也是增函數(shù),則稱上的完美增函數(shù)”.已知,.

1)判斷函數(shù)是否為區(qū)間上的“完美增函數(shù)”;

2)若函數(shù)是區(qū)間上的“完美增函數(shù)”,求實(shí)數(shù)的最大值.

【答案】1)不是;(2

【解析】

(1)可根據(jù)已知條件分別求出在區(qū)間是不是單調(diào)遞增函數(shù),再根據(jù)給的定義來(lái)判斷是否為“完美增函數(shù)”;

(2)利用函數(shù)是區(qū)間上的“完美增函數(shù)”,可得到在區(qū)間均為增函數(shù),從而可得到實(shí)數(shù)的最大值.

(1)由,則求導(dǎo)得,

所以上是增函數(shù);

,則求導(dǎo)得,

當(dāng)時(shí),不恒成立,即上不是增函數(shù).

所以函數(shù)不是區(qū)間上的“完美增函數(shù)”.

2)因?yàn)楹瘮?shù)是區(qū)間上的“完美增函數(shù)”,

所以在區(qū)間均為增函數(shù),

,則求導(dǎo)得

在區(qū)間上單調(diào)遞增.

,求導(dǎo)得,

,則,解得

即當(dāng)時(shí),恒成立,上單調(diào)遞增.

于是實(shí)數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時(shí),求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)上的單調(diào)性;

(2)設(shè),當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下,通過(guò)日常監(jiān)控得知,,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為

1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得產(chǎn)品至少有一件合格的概率不低于99.5%,求的最小值;

2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.

①已知生產(chǎn)線的不合格品返工后每件產(chǎn)品可分別挽回?fù)p失5元和3元,若從兩條生產(chǎn)線上各隨機(jī)抽檢1000件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線的挽回?fù)p失較多?

②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類后,每件可分別獲利10元、8元、6元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取100件進(jìn)行分級(jí)檢測(cè),結(jié)果統(tǒng)計(jì)如圖所示,用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤(rùn)為,求的分布列并估計(jì)該廠產(chǎn)量2000件時(shí)利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,函數(shù)

1)求函數(shù)的單調(diào)遞減區(qū)間;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】珠算之父程大位是我國(guó)明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問(wèn)題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位定點(diǎn)幫扶100戶貧困戶.工作組對(duì)這100戶村民的貧困狀況和家庭成員受教育情況進(jìn)行了調(diào)查:甲村55戶貧困村民中,家庭成員接受過(guò)中等及以上教育的只有10戶,乙村45戶貧困村民中,家庭成員接受過(guò)中等及以上教育的有20.

1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為貧困與接受教育情況有關(guān);

家庭成員接受過(guò)中等以下

教育的戶數(shù)

家庭成員接受過(guò)中等及以上

教育的戶數(shù)

合計(jì)

甲村貧困戶數(shù)

乙村貧困戶數(shù)

合計(jì)

2)在被幫扶的100戶貧困戶中,按分層抽樣的方法從家庭成員接受過(guò)中等及以上教育的貧困戶中抽取6戶,再?gòu)倪@6戶中采用簡(jiǎn)單隨機(jī)抽樣的方法隨機(jī)抽取2戶,求這2戶中甲、乙兩村恰好各1戶的概率.

參考公式與數(shù)據(jù):,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案