【題目】數(shù)列{an}的前n項和為Sn , 且Sn=3﹣ an , bn是an與an+1的等差中項,則數(shù)列{bn}的通項公式為(
A.4×3n
B.4×( n
C. ×( n1
D. ×( n

【答案】B
【解析】解:∵Sn=3﹣ an , ∴a1=S1=3﹣ ,解得a1=2.
n≥2時,an=Sn﹣Sn1=3﹣ an ,化為:an=
∴數(shù)列{an}是等比數(shù)列,首項為2,公比為
∴an=
∵bn是an與an+1的等差中項,
∴bn= (an+an+1)= =
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項公式的相關(guān)知識,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f1(x)=x2,f2(x)=alnx(其中a>0).

(1)求函數(shù)f(x)=f1(xf2(x)的極值;

(2)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(,e)內(nèi)有兩個零點(diǎn),求正實數(shù)a的取值范圍;

(3)求證:當(dāng)x>0時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)求的值;

(II)求

(III)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過定點(diǎn)P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點(diǎn),滿足 = ,若存在求m值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進(jìn)一步的認(rèn)識,對于霧霾天氣的研究也漸漸活躍起來,某研究機(jī)構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)與霧霾天數(shù)進(jìn)行統(tǒng)計分析,得出下表數(shù)據(jù).

4

5

7

8

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖,并說明其相關(guān)關(guān)系;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).

(相關(guān)公式:, )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)使方程在區(qū)間上恰有三個解,則實數(shù)的值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷錯誤的是______(填寫序號)

①集合{y|y=}4個子集;

②若α≠β,則tanα≠tanβ

③若log2alog2b,則2a2b

④設(shè)函數(shù)fx=log2x的反函數(shù)為gx),則g2=1;

⑤已知定義在R上的奇函數(shù)fx)在(-∞,0)內(nèi)有1008個零點(diǎn),則函數(shù)fx)的零點(diǎn)個數(shù)為2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)t0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

1)已知(x=,x[0,1]利用上述性質(zhì),求函數(shù)fx)的值域;

2)對于(1)中的函數(shù)fx)和函數(shù)gx=-x+2a.若對任意x1[0,1],總存在x2[01],使得gx2=fx1)成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則滿足的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案