【題目】已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.

1)求數(shù)列的通項(xiàng)公式;

2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;

3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

【答案】1;(2)證明見解析,;(3.

【解析】

1)運(yùn)用數(shù)列的遞推式以及數(shù)列的和與通項(xiàng)的關(guān)系可得,再由等比數(shù)列的定義、通項(xiàng)公式可得結(jié)果;(2)對(duì)等式兩邊除以,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(3)求得,由數(shù)列的錯(cuò)位相減法求和,可得,化簡,,對(duì)任意的成立,運(yùn)用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.

(1),可得,即;

時(shí),,,

相減可得,

;

(2)證明:

可得,

可得是首項(xiàng)和公差均為1的等差數(shù)列,

可得,

(3) ,

n項(xiàng)和為,

相減可得

,

可得

,即為,

,對(duì)任意的成立,

,

可得為遞減數(shù)列,即n=1時(shí)取得最大值12=1,

可得,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線上.

(1)求圓的方程;

(2)已知過點(diǎn)的直線與圓相交截得的弦長為,求直線的方程;

(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對(duì)于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2x的焦點(diǎn)為F,平行于x軸的兩條直線l1,l2分別交C于A,B兩點(diǎn),交C的準(zhǔn)線于P,Q兩點(diǎn).

(1)若F在線段AB上,R是PQ的中點(diǎn),證明:AR∥FQ;

(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種汽車,購車費(fèi)用是10萬元,第一年維修費(fèi)用是0.2萬元,以后逐年遞增0.2萬元,且每年的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)等約為0.9萬元.

1)設(shè)這種汽車使用年()的維修費(fèi)用的和為萬元,求的表達(dá)式;

2)這種汽車使用多少年時(shí),它的年平均費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , .

(I)求異面直線所成角的余弦值;

(II)求證: 平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O與直線相切.

1)求圓O的方程;

2)若過點(diǎn)的直線l被圓O所截得的弦長為4,求直線l的方程;

3)若過點(diǎn)作兩條斜率分別為,的直線交圓OB、C兩點(diǎn),且,求證:直線BC恒過定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱臺(tái)的底面是正三角形,平面平面,.

(Ⅰ)求證:;

(Ⅱ)若和梯形的面積都等于,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正項(xiàng)等差數(shù)列的前n項(xiàng)和為,已知成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前n項(xiàng)和;

3)設(shè)數(shù)列滿足求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案