【題目】如圖,在三棱柱ABC﹣A1B1C1中,CA=CB=AA1 , ∠BAA1=∠BAC=60°,點(diǎn)O是線段AB的中點(diǎn). (Ⅰ)證明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C= ,求二面角A﹣BC﹣A1的余弦值.
【答案】證明:(Ⅰ)連接OC,OA1 , A1B.∵CA=CB,∴OC⊥AB. ∵CA=AB=AA1 , ∠BAA1=∠BAC=60°,
故△AA1B、△ABC都為等邊三角形,
∴OA1⊥AB,CO⊥AB,∴OA、OA1、OC兩兩垂直,
以O(shè)為原點(diǎn),OA、OA1、OC所在直線分別為x,y,z軸,
建立空間直角坐標(biāo)系,
設(shè)CA=CB=AA1=2,
則B(﹣1,0,0),C1(﹣1, , ),O(0,0,0),
A1(0, ,0),C(0,0, ),
=(0, , ), =(0, ,0), =(0,0, ),
設(shè)平面OA1C的法向量 =(1,0,0),
∵ =0,且BC1平面OA1C,
∴BC1∥平面OA1C.
解:(Ⅱ)∵AB=2,A1C= ,∴B(﹣1,0,0),C(0,0, ),A1(0, ,0),
=(1,0, ), =(1, ,0),
設(shè)平面BCA1的法向量 =(x,y,z),
則 ,取x= ,得 ,
平面ABC的法向量 =(0,0,1),
設(shè)二面角A﹣BC﹣A1的平面角為θ,
則cosθ= = = .
∴二面角A﹣BC﹣A1的余弦值為 .
【解析】(Ⅰ)連接OC,OA1 , A1B,以O(shè)為原點(diǎn),OA、OA1、OC所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能證明BC1∥平面OA1C.(Ⅱ)求出平面BCA1的法向量和平面ABC的法向量,利用向量法能求出二面角A﹣BC﹣A1的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(﹣1, )是橢圓E: =1(a>b>0)上一點(diǎn),F(xiàn)1 , F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A,B是橢圓E上兩個(gè)動(dòng)點(diǎn),滿足: (0<λ<4,且λ≠2),求直線AB的斜率.
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖長(zhǎng)方體ABCD﹣A1B1C1D1的底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2,E、F、G分別為CB1、CD1、AB的中點(diǎn).
(Ⅰ)求證:FG∥面ADD1A1;
(Ⅱ)求二面角B﹣EF﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f ( x )=sin(2x+ )+cos(2x+ )+2sin x cos x.
(Ⅰ)求函數(shù) f ( x) 圖象的對(duì)稱軸方程;
(Ⅱ)將函數(shù) y=f ( x) 的圖象向右平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的 4 倍,縱坐標(biāo)不變,得到函數(shù) y=g ( x) 的圖象,求 y=g ( x) 在[ ,2π]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+ )的圖象與x軸交點(diǎn)的橫坐標(biāo),依次構(gòu)成一個(gè)公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則( )
A.g(x)是奇函數(shù)
B.g(x)的圖象關(guān)于直線x=﹣ 對(duì)稱
C.g(x)在[ , ]上的增函數(shù)
D.當(dāng)x∈[ , ]時(shí),g(x)的值域是[﹣2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)是( ) ①命題“x∈R,x3﹣x2+1≤0”的否定是“ ;
②“ ”是“三個(gè)數(shù)a,b,c成等比數(shù)列”的充要條件;
③“m=﹣1”是“直線mx+(2m﹣1)y+1=0和直線3x+my+2=0垂直”的充要條件:
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競(jìng)標(biāo),假設(shè)這三個(gè)工程競(jìng)標(biāo)成功與否相互獨(dú)立,該公司對(duì)A,B,C三項(xiàng)重點(diǎn)工程競(jìng)標(biāo)成功的概率分別為a,b, (a>b),已知三項(xiàng)工程都競(jìng)標(biāo)成功的概率為 ,至少有一項(xiàng)工程競(jìng)標(biāo)成功的概率為 .
(1)求a與b的值;
(2)公司準(zhǔn)備對(duì)該公司參加A,B,C三個(gè)項(xiàng)目的競(jìng)標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)2萬元,B項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)4萬元,C項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)6萬元,求競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)唐代詩人王維詩云:“明月松間照,清泉石上流”,這里明月和清泉,都是自然景物,沒有變,形容詞“明”對(duì)“清”,名詞“月”對(duì)“泉”,詞性不變,其余各詞均如此.變化中的不變性質(zhì),在文學(xué)和數(shù)學(xué)中都廣泛存在.比如我們利用幾何畫板軟件作出拋物線C:x2=y的圖象(如圖),過交點(diǎn)F作直線l交C于A、B兩點(diǎn),過A、B分別作C的切線,兩切線交于點(diǎn)P,過點(diǎn)P作x軸的垂線交C于點(diǎn)N,拖動(dòng)點(diǎn)B在C上運(yùn)動(dòng),會(huì)發(fā)現(xiàn) 是一個(gè)定值,該定值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率等于 ,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的周長(zhǎng)為4 ,直線,l:y=kx+m與y軸交干點(diǎn)P,與橢圓E相交于A、B兩個(gè)點(diǎn). (Ⅰ)求橢圓E的方程;
(Ⅱ)若 =3 ,求m2的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com