有人提出如下的圓周率的近似算法:在如圖的單位正方形內(nèi)均勻地取n個點(diǎn)Pi(xi,yi)(i∈{1,2,…,n}),然后統(tǒng)計出以xi,yi,1為邊長的三角形中銳角三角形的個數(shù)m,則當(dāng)n充分大小時,π≈,試分析這種算法是否正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有人提出如下的圓周率的近似算法:在下圖的單位正方形內(nèi)均勻地取n個點(diǎn)pi(xi,yi)(i∈{1,2,…,n}),然后統(tǒng)計出以xi,yi,1為邊長的三角形中銳角三角形的個數(shù)m,則當(dāng)n充分大時,π≈,試分析這種算法是否正確.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有人提出如下的圓周率的近似算法:在圖3-2的單位正方形內(nèi)均勻地取n個點(diǎn)Pi(xi,yi)(i∈{1,2,…,n}),然后統(tǒng)計出以xi,yi,1為邊長的三角形中銳角三角形的個數(shù)m,則當(dāng)n充分大時,π≈,試分析這種算法是否正確.

         圖3-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有人提出如下的圓周率π的近似算法:在如圖3-1所示的單位正方形內(nèi)均勻地取n個Pi(xi,yi)(i∈{1,2, …,n}),然后統(tǒng)計出以xi,yi,

          圖3-1

1為邊長的三角形中銳角三角形的個數(shù)m,則當(dāng)n充分大時,π≈,試分析這種算法是否正確.

查看答案和解析>>

同步練習(xí)冊答案