【題目】手機(jī)作為客戶端越來(lái)越為人們所青睞,通過手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式.在某市,隨機(jī)調(diào)查了200名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”?
2×2列聯(lián)表:
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 120 | ||
不使用手機(jī)支付 | 48 | ||
合計(jì) | 200 |
(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”抽取一個(gè)容量為10的樣本,再?gòu)闹须S機(jī)抽取3人,求這三人中“使用手機(jī)支付”的人數(shù)的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【答案】(I)有99.5%的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”
(Ⅱ)所求隨機(jī)變量的概率分布為
0 | 1 | 2 | 3 | |
期望
【解析】
(Ⅰ)根據(jù)抽樣比例求得對(duì)應(yīng)數(shù)據(jù),填寫2×2列聯(lián)表,根據(jù)表中數(shù)據(jù)計(jì)算K2,對(duì)照臨界值得出結(jié)論;
(Ⅱ)根據(jù)分層抽樣方法計(jì)算對(duì)應(yīng)人數(shù),得出隨機(jī)變量X的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫出X的分布列,計(jì)算數(shù)學(xué)期望值.
(Ⅰ)從使用手機(jī)支付的人群中隨意抽取1人,抽到青年的概率為,
∴使用手機(jī)支付的人群中青年的人數(shù)為120=84,
則使用手機(jī)支付的人群中的中老年的人數(shù)為120﹣84=36,
由此填寫2×2列聯(lián)表如下;
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 84 | 36 | 120 |
不使用手機(jī)支付 | 32 | 48 | 80 |
合計(jì) | 116 | 84 | 200 |
根據(jù)表中數(shù)據(jù),計(jì)算K217.734>7.879,
∴P(K2≥7.879)=0.005,
由此判斷有99.5%的把握認(rèn)為“市場(chǎng)購(gòu)物用手機(jī)支付與年齡有關(guān)”;
(Ⅱ)根據(jù)分層抽樣方法,從這200名顧客中抽取10人,
抽到“使用手機(jī)支付”的人數(shù)為106,
“不使用手機(jī)支付”的人數(shù)為4,
設(shè)隨機(jī)抽取的3人中“使用手機(jī)支付”的人數(shù)為隨機(jī)變量X,
則X的可能取值分別為0,1,2,3;
計(jì)算P(X=0),
P(X=1),
P(X=2),
P(X=3),
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
X的數(shù)學(xué)期望為EX=0123.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)若,求在區(qū)間上的值域;
(2)求在區(qū)間上的最值;
(3)若的在區(qū)間上無(wú)最值,求m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知過點(diǎn)的圓和直線相切,且圓心在直線上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn),圓上是否存在點(diǎn),使若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 經(jīng)過點(diǎn),一個(gè)焦點(diǎn)是.
(1)求橢圓的方程;
(2)若傾斜角為的直線與橢圓交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形,⊥平面,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)平面點(diǎn)集具有性質(zhì):(1)任意三點(diǎn)不共線;(2)任意兩點(diǎn)距離各不相等.對(duì)于中兩點(diǎn)、,若存在點(diǎn)使得,則稱是的一條“中邊”;對(duì)于中三點(diǎn)、、,若、、都是的中邊,則稱是的“中邊三角形”.求最小的,使得任意具有性質(zhì)(1)和(2)的元平面點(diǎn)集中必存在中邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】越接近高考學(xué)生焦慮程度越強(qiáng),四個(gè)高三學(xué)生中大約有一個(gè)有焦慮癥,經(jīng)有關(guān)機(jī)構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對(duì)應(yīng)的正常值變化情況如下表:
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1 |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
(1)作出散點(diǎn)圖:
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回歸方程 (精確到0.01);
(3)根據(jù)經(jīng)驗(yàn),觀測(cè)值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進(jìn)行心理疏導(dǎo),若一個(gè)學(xué)生在距高考第二周時(shí)觀測(cè)值為100,則該學(xué)生是否需要進(jìn)行心理疏導(dǎo)?
(, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分15分)
在等差數(shù)列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全國(guó)校足辦決定于2019年8月組織開展全國(guó)青少年校園足球夏令營(yíng)總營(yíng)活動(dòng).某校購(gòu)買兩種不同品牌的足球,其中種品牌足球個(gè),種品牌足球個(gè),共需元,已知種品牌足球的售價(jià)比種品牌足球的售價(jià)高元/個(gè).
(1)求兩種品牌足球的售價(jià);
(2)該校為舉辦足球聯(lián)誼賽,決定第二次購(gòu)買兩種不同品牌的足球.恰逄商場(chǎng)對(duì)兩種品牌足球的售價(jià)進(jìn)行調(diào)整,種品牌足球售價(jià)比第一次購(gòu)買時(shí)提高了元/個(gè),種品牌足球按第一次購(gòu)買時(shí)售價(jià)的折(即原價(jià)的)出售.如果第二次購(gòu)買種品牌足球的個(gè)數(shù)比第一次少個(gè),第二次購(gòu)買種品牌足球的個(gè)數(shù)比第一次多個(gè),則第二次購(gòu)買兩種品牌足球的總費(fèi)用比第一次少元.求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com