觀察下列式子:數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,…,根據(jù)以上式子可以猜想:數(shù)學(xué)公式________.


分析:確定不等式的左邊各式分子是1,分母是自然數(shù)的平方和,右邊分母與最后一項(xiàng)的分母相同,分子是以3為首項(xiàng),2為公差的等差數(shù)列,即可求得結(jié)論.
解答:觀察下列式子:,,…,
可知不等式的左邊各式分子是1,分母是自然數(shù)的平方和,右邊分母與最后一項(xiàng)的分母相同,分子是以3為首項(xiàng),2為公差的等差數(shù)列,
故可得:
故答案為:
點(diǎn)評(píng):本題考查歸納推理,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列式子:
13=1
23=3+5
33=7+9+11
43=13+15+17+19

由此可以推知,第n行可以寫(xiě)成n3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列式子:
x
3
,
x3
5
x5
7
,
x7
9
,
x9
11
,…
它們是按一定規(guī)律排列的,依照此規(guī)律第n個(gè)式子是
x2n-1
2n+1
x2n-1
2n+1
(用含n的式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧一模)觀察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根據(jù)上述規(guī)律,第n個(gè)不等式應(yīng)該為
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•青浦區(qū)二模)[理科]觀察下列式子:1+
1
22
3
2
1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,可以猜想結(jié)論為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:x∈(0,+∞),觀察下列式子:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3…
類比有x+
a
xn
≥n+1(n∈N*)
,則a的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案