已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點都在同一球面上,若AB=AA1=2,AC=1,∠BAC=60°,則此球的表面積等于________.


分析:通過已知體積求出底面外接圓的半徑,確定球心為O的位置,求出球的半徑,然后求出球的表面積.
解答:解:在△ABC中AB=AA1=2,AC=1,∠BAC=60°,
可得BC=,
可得△ABC外接圓半徑r=1,
三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,
三棱柱為直三棱柱,側(cè)面BAA1B1是正方形它的中心是球心O,
球的直徑為:AA1=2,球半徑R=,
故此球的表面積為4πR2=8π
故答案為:8π
點評:本題是中檔題,解題思路是:先求底面外接圓的半徑,轉(zhuǎn)化為直角三角形,求出球的半徑,這是三棱柱外接球的常用方法;本題考查空間想象能力,計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A?B?C?所有的棱長均為2,且側(cè)棱與底面垂直,則該三棱柱的體積是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東高二第二次月考文科數(shù)學試卷(解析版) 題型:填空題

已知三棱柱ABC-A´B´C´所有的棱長均為2,且側(cè)棱與底面垂直,則該三棱柱的體積

            

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱柱ABC-A?B?C?所有的棱長均為2,且側(cè)棱與底面垂直,則該三棱柱的體積是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省云浮市高二(上)12月月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知三棱柱ABC-A´B´C´所有的棱長均為2,且側(cè)棱與底面垂直,則該三棱柱的體積是   

查看答案和解析>>

同步練習冊答案