【題目】某營養(yǎng)協(xié)會對全市18歲男生的身高作調查,統(tǒng)計顯示全市18歲男生的身高服從正態(tài)分布,現(xiàn)某校隨機抽取了100名18歲男生的身高分析,結果這100名學生的身高全部介于到之間.現(xiàn)將結果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖.
(1)若全市18歲男生共有人,試估計該市身高在以上的18歲男生人數;
(2)求的值,并計算該校18歲男生的身高的中位數(精確到小數點后三位);
(3)若身高以上的學生校服需要單獨定制,現(xiàn)從這100名學生中身高在以上的同學中任意抽取3人,這三人中校服需要單獨定制的人數記為,求的分布列和期望.
附: ,則;
,則;
,則.
【答案】(1);(2),;(3)分布列見解析, .
【解析】試題分析:
(1)根據正態(tài)分布得到,故,從而可得身高在以上的18歲男生人數.(2)根據頻率分布直方圖中所有小長方形的面積和為1可求得,然后根據中位數的意義可求得中位數的估計值.(3)由頻率分布直方圖可得身高在內的為人,身高在內的為人.從而可得隨機變量的所有可能取值,并根據古典概型求得對應的概率,于是可得分布列,從而可得期望.
試題解析:
(1)由題意得,
∴,
∴可估計該市身高在以上的18歲男生人數為(人)
(2)由頻率分布直方圖可得,
∴.
設中位數為,則,
∴.
即中位數為.
(3)由題意得身高在內的人數為人,
身高在內的人數為人,
由題意得隨機變量的所有可能取值為0,1,2,3.
, ,
, ,
故的分布列如下:
0 | 1 | 2 | 3 | |
∴.
科目:高中數學 來源: 題型:
【題目】已知向量,,,,函數,的最小正周期為.
(1)求的單調增區(qū)間;
(2)方程;在上有且只有一個解,求實數n的取值范圍;
(3)是否存在實數m滿足對任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行購物抽獎活動,抽獎箱中放有編號分別為的五個小球.小球除編號不同外,其余均相同.活動規(guī)則如下:從抽獎箱中隨機抽取一球,若抽到的小球編號為,則獲得獎金元;若抽到的小球編號為偶數,則獲得獎金元;若抽到其余編號的小球,則不中獎.現(xiàn)某顧客依次有放回的抽獎兩次.
(1)求該顧客兩次抽獎后都沒有中獎的概率;
(2)求該顧客兩次抽獎后獲得獎金之和為元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】盒中共有9個球,其中有4個紅球、3個黃球和2個綠球,這些球除顏色外完全相同.
(1)從盒中一次隨機取出2個球,求取出的2個球的顏色相同的概率P;
(2)從盒中一次隨機取出4個球,其中紅球、黃球、綠球的個數分別記為x1,x2,x3,隨機變量X表示x1,x2,x3中的最大數,求X的概率分布和數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的部分圖象如圖所示,則下列判斷正確的是( )
A. 函數的圖象關于點對稱
B. 函數的圖象關于直線對稱
C. 函數的最小正周期為
D. 當時,函數的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查甲、乙兩個網站受歡迎的程度,隨機選取了14天,統(tǒng)計上午8:00-10:00間各自的點擊量:
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25
乙:12,37,21,5,54,42,61,45,19,6,71,36,42,14
(1)請用莖葉圖表示上面的數據.
(2)甲網站點擊量在[10,40]間的頻率是多少?
(3)甲、乙兩個網站哪個更受歡迎?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,曲線在點處的切線與軸平行.函數.
(Ⅰ)求的值;
(Ⅱ)求證:函數共有兩個零點,一個零點是,另一個零點在區(qū)間內;
(Ⅲ)求證:存在,當時, .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com