已知函數(shù)f(x)=ln(ax+1)+
2
x+1
-1(x≥0,a>0).
(1)若f(x)在x=1處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求導(dǎo)數(shù),利用f(x)在x=1處取得極值,可得f′(1)=2a-2=0,即可求a的值;
(2)分類討論,利用導(dǎo)數(shù)的正負(fù),即可求f(x)的單調(diào)區(qū)間.
解答: 解:(1)f′(x)=
ax2+a-2
(ax+1)(x+1)2
,
∵f(x)在x=1處取得極值,
∴f′(1)=2a-2=0,
∴a=1;
(2)∵f′(x)=
ax2+a-2
(ax+1)(x+1)2
(a>0,x≥0),
若a≥2,x≥0,則f′(x)>0,∴f(x)在(0,+∞)上單調(diào)遞增,
0<a<2令f′(x)=0得x=
2-a
a
-
2-a
a
(舍去),
∴函數(shù)f(x)在(0,
2-a
a
)
上單調(diào)遞減,在(
2-a
a
,+∞)
上單調(diào)遞增.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值與單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(3-4i)z=4+3i,則|z|=(  )
A、5B、4C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,
3
-
3
cos2x),
b
=(2cosx,1),定義f(x)=
a
b

(1)求函數(shù)y=f(x),x∈R的單調(diào)遞減區(qū)間;
(2)若函數(shù)y=f(x+θ)(0<θ<
π
2
)為偶函數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
、
b
、
c
是同一平面內(nèi)的三個(gè)向量,其中
a
=(1,-2).
(Ⅰ)若|
c
|=2
5
,且
c
a
,求
c
的坐標(biāo);
(Ⅱ)若|
b
|=1,且
a
+
b
a
-2
b
垂直,求
a
b
的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)點(diǎn)P在拋物線y2=4x上,
(1)若點(diǎn)P到焦點(diǎn)的距離為5,求點(diǎn)P的坐標(biāo);
(2)若點(diǎn)P到直線y=x+3的距離最短,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+bx2+cx+a在x=-
2
3
與x=1處取到極值,求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)log3
27
+lg25+lg4+7 log72+(-9.8)0
(2)已知lg2=a,lg3=b,求log512的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切與點(diǎn)(1,-11).
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性,并求函數(shù)的極值;
(3)若函數(shù)在(m,m2+2m)上為減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)及其與坐標(biāo)軸的一個(gè)交點(diǎn)正好是一個(gè)等邊三角形的三個(gè)頂點(diǎn),且橢圓上的點(diǎn)到焦點(diǎn)距離的最小值為
3
,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案