某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設(shè)這支籃球隊與其他籃球隊比賽勝場的事件是獨立的,并且勝場的概率是.

(1)求這支籃球隊首次勝場前已經(jīng)負了兩場的概率;

(2)求這支籃球隊在6場比賽中恰好勝了3場的概率;

(3)求這支籃球隊在6場比賽中勝場數(shù)的期望和方差.

 

(1) (2) (3)

【解析】

【解析】
(1)P=.

(2)6場勝3場的情況有C64種,

∴P=C6333=20××.

(3)由于X服從二項分布,即X~B,

∴E(X)=6×=2,D(X)=6××.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆貴州省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知兩點,且的等差中項,則動點的軌跡方程是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)3章練習(xí)卷(解析版) 題型:填空題

冶煉某種金屬可以用舊設(shè)備和改造后的新設(shè)備,為了檢驗用這兩種設(shè)備生產(chǎn)的產(chǎn)品中所含雜質(zhì)的關(guān)系,調(diào)查結(jié)果如下表所示:

 

雜質(zhì)高

雜質(zhì)低

舊設(shè)備

37

121

新設(shè)備

22

202

根據(jù)以上數(shù)據(jù),則有________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)3.1練習(xí)卷(解析版) 題型:解答題

從發(fā)生汽車碰撞事故的司機中抽取2 000名司機.根據(jù)他們的血液中是否含有酒精以及他們是否對事故負有責(zé)任.將數(shù)據(jù)整理如下:

 

有責(zé)任

無責(zé)任

合計

有酒精

650

150

800

無酒精

700

500

1 200

合計

1 350

650

2 000

那么,司機對事故負有責(zé)任與血液中含有酒精是否有關(guān)系?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)2章練習(xí)卷(解析版) 題型:解答題

如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內(nèi)的頻率如下表:

時間(分鐘)

10~20

20~30

30~40

40~50

50~60

L1的頻率

0.1

0.2

0.3

0.2

0.2

L2的頻率

0

0.1

0.4

0.4

0.1

現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.

(1)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應(yīng)如何選擇各自的路徑?

(2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針地(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)2章練習(xí)卷(解析版) 題型:填空題

獨立工作的兩套報警系統(tǒng)遇危險報警的概率均為0.4,則遇危險時至少有一套報警系統(tǒng)報警的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)2章練習(xí)卷(解析版) 題型:填空題

甲、乙、丙三人獨立地去破譯一個密碼,他們能譯出的概率分別為,,則此密碼能被譯出的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)2.5練習(xí)卷(解析版) 題型:填空題

袋中有大小相同的三個球,編號分別為1,2,2,從袋中每次取出一個球,若取到球的編號為奇數(shù),則取球停止,用X表示所有被取到的球的編號之和,則X的方差為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達標(biāo)2.3練習(xí)卷(解析版) 題型:解答題

設(shè)甲、乙、丙三人每次射擊命中目標(biāo)的概率分別為0.7、0.6和0.5.三人各向目標(biāo)射擊一次,求至少有一人命中目標(biāo)的概率及恰有兩人命中目標(biāo)的概率.

 

查看答案和解析>>

同步練習(xí)冊答案