【題目】在直角坐標(biāo)系中,已知拋物線上一點(diǎn)到焦點(diǎn)的距離為6,點(diǎn)為其準(zhǔn)線上的任意一點(diǎn),過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為.

1)求拋物線的方程;

2)當(dāng)點(diǎn)軸上時(shí),證明:為等腰直角三角形.

3)證明:為直角三角形.

【答案】12)見解析(3)見解析

【解析】

1)根據(jù)拋物線的定義可知,到焦點(diǎn)的距離等于到準(zhǔn)線的距離,得到求出參數(shù)即可求出拋物線的解析式;

2)由(1)可得,由題意知切線的斜率存在且不為0,設(shè)為,所以切線方程為,聯(lián)立直線與拋物線方程,消去得到關(guān)于的一元二次方程,根據(jù)求出的值,即可求出、的坐標(biāo),即可得證;

3)設(shè)點(diǎn),由題意知切線的斜率存在且不為0,設(shè)為,所以切線方程為,聯(lián)立直線與拋物線方程,消去得到關(guān)于的一元二次方程,根據(jù)求出的值,即可得證;

解:(1)根據(jù)題意可得,得,

所以拋物線的方程為.

2)拋物線的準(zhǔn)線方程為,

所以點(diǎn),由題意知切線的斜率存在且不為0,設(shè)為

所以切線方程為.

由方程組,得

所以,

解得,解得.

不妨取,,易得為等腰直角三角形.

3)設(shè)點(diǎn),由題意知切線的斜率存在且不為0,設(shè)為,

所以切線方程為,

由方程組,

,

此時(shí)

,

所以,即.

所以為直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其焦點(diǎn)為,直線過點(diǎn)交于、兩點(diǎn),當(dāng)的斜率為時(shí),.

1)求的值;

2)在軸上是否存在一點(diǎn)滿足(點(diǎn)為坐標(biāo)原點(diǎn))?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動,且,若動點(diǎn)滿足.

1)求出動點(diǎn)的軌跡的標(biāo)準(zhǔn)方程;

2)設(shè)動直線與曲線有且僅有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn)(兩點(diǎn)均不在坐標(biāo)軸上),求直線的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若恒成立,試確定實(shí)數(shù)k的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個(gè)交點(diǎn),且.

1)求圓的方程;

2)已知橢圓的上頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點(diǎn)分別是,且橢圓上一動點(diǎn)的最遠(yuǎn)距離為,過的直線與橢圓交于,兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為直角時(shí),求直線的方程;

3)直線的斜率存在且不為0時(shí),試問軸上是否存在一點(diǎn)使得,若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sinxxcosxx,f′x)為fx)的導(dǎo)數(shù).

1)證明:f′x)在區(qū)間(0,π)存在唯一零點(diǎn);

2)若x[0π]時(shí),fxax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是: (是參數(shù)).

(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;

(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

2)若是曲線上的任意一點(diǎn),是曲線上的任意一點(diǎn),求線段的最小值.

查看答案和解析>>

同步練習(xí)冊答案