15.設(shè)命題p:函數(shù)y=cx為減函數(shù);命題q:已知c>0,當(dāng)x∈[1,2]時,函數(shù)f(x)=x+$\frac{1}{4x}>\frac{1}{c}$恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.

分析 先求出命題p,q成立的等價條件,利用p∨q為真命題,p∧q為假命題,確定實數(shù)c的取值范圍

解答 解∵指數(shù)函數(shù)y=cx數(shù)為減函數(shù),
∴0<c<1,
即p真時,0<c<1.
函數(shù)f(x)=x+$\frac{1}{4x}$>$\frac{1}{c}$對x∈[1,2]恒成立,由對勾函數(shù)的性質(zhì)可知f(x)=x+$\frac{1}{4x}$在x∈[1,2]上單調(diào)遞增,
所以f(x)min=f(1)=$\frac{5}{4}$,
$\frac{1}{c}$<$\frac{5}{4}$,得c>$\frac{4}{5}$,
即q真時,c>$\frac{4}{5}$,
∵p∨q為真,p∧q為假,
∴p、q一真一假.
①p真q假時,0<c≤$\frac{4}{5}$;②p假q真時,c≥1.
故c的取值范圍為0<c≤$\frac{4}{5}$或c≥1.

點(diǎn)評 本題主要考查復(fù)合命題與簡單命題之間的關(guān)系,利用條件先求出命題p,q的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若log2(ax2-2x+2)>2在x∈[1,2]上恒成立,則實數(shù)a的取值范圍為(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.方程$\left\{\begin{array}{l}x+y=3\\ 2x-3y=1\end{array}\right.$解集為{(2,1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a2a4=(  )
A.6B.9C.36D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}前n項和為Sn,且Sn+an=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=a1,bn=$\frac{3_{n-1}}{_{n-1}+3}$,n≥2 求證{$\frac{1}{_{n}}$}為等差數(shù)列,并求數(shù)列{bn}的通項公式;
(Ⅲ)設(shè)cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若圓C的圓心為(-2,1),半徑為為3,則圓C的方程式( 。
A.(x-2)2+(y+1)2=3B.(x-2)2+(y+1)2=9C.(x+2)2+(y-1)2=3D.(x+2)2+(y-1)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l的傾斜角為45°,經(jīng)過點(diǎn)P(-2,3),則直線的方程為(  )
A.Y=x-5B.y=x+3C.y=x-5D.y=x+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=ax3+2bx-1且f(-1)=3,則f(1)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],且a+b≠0時,$\frac{f(a)+f(b)}{a+b}$>0成立.
(1)求證:f(x)在[-1,1]上為增函數(shù);
(2)解不等式f(log2(2x+1))>0;
(3)若f(x)<m2-2am+1對任意的a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案