本小題滿分12分)
已知三棱錐PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大。
(1)證明:見解析;(2) SN與平面CMN所成角為45°.
【解析】如果已知向量的坐標(biāo),求向量的夾角,我們可以分別求出兩個向量的坐標(biāo),進(jìn)一步求出兩個向量的模及他們的數(shù)量積,然后代入公式cosθ得到。
(1)要證明CM⊥SN,我們可要證明 ·=0即可,根據(jù)向量數(shù)量積的運(yùn)算,我們不難證明;
(2)要求SN與平面CMN所成角的大小,我們只要利用求向量夾角的方法,求出SN和方向向量與平面CMN的法向量的夾角,再由它們之間的關(guān)系,易求出SN與平面CMN所成角的大小.
解:設(shè)PA=1,以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系則P(0,0,1),C(0,1,0),B(2,0,0),M,N,S.
(1)證明:=(1,-1,),=,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810135434221727/SYS201212181014339828588497_DA.files/image001.png">·=-++0=0,
所以CM⊥SN.
(2) =,設(shè)a=(x,y,z)為平面CMN的一個法向量,則,
∴,取x=2,得a=(2,1,-2).因?yàn)閨cos〈a,〉|=,
所以SN與平面CMN所成角為45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com