某個電腦用戶計劃使用不超過1 000元的資金購買單價分別為80元、90元的單片軟件和盒裝磁盤.根據(jù)需要,軟件至少買3片,磁盤至少買4盒,寫出滿足上述所有不等關(guān)系的不等式.
設(shè)買軟件x片、磁盤y盒,

N+

 
N+
 
則x、y滿足關(guān)系:.

 
設(shè)買軟件x片、磁盤y盒,

N+

 
N+
 
則x、y滿足關(guān)系:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知且目標(biāo)函數(shù)的最大值為7,最小值為1,則
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

滿足,則使得的值最小的是   (  )
A.(4.5,3)B.(3,6)C.(9,2)D.(6,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

20個下崗職工開了50畝荒地,這些地可以種蔬菜、棉花、水稻,如果種這些農(nóng)作物每畝地所需的勞力和預(yù)計的產(chǎn)值如下:
 
每畝需勞力
每畝預(yù)計產(chǎn)值
蔬 菜

1100元
棉 花

750元
水 稻

600元
問怎樣安排,才能使每畝地都種上作物,所有職工都有工作,而且農(nóng)作物的預(yù)計總產(chǎn)值達(dá)到最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某家具公司制作木質(zhì)的書桌和椅子兩種家具,需要木工和漆工兩道工序,已知木工平均四個小時做一把椅子,八個小時做一張書桌,該公司每星期木工最多有8 000個工作時;漆工平均兩小時漆一把椅子,一個小時漆一張書桌,該公司每星期漆工最多有1 300個工作時.又已知制作一把椅子和一張書桌的利潤分別是15元和20元,根據(jù)以上條件,怎樣安排生產(chǎn)能獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人有樓房一幢,室內(nèi)面積共180㎡,擬分隔兩類房間作為旅游客房.大每間面積為18㎡,可住游客5名,每名游客每天住宿費為40元;小房間每間面積為15㎡,可住游客3名,每名游客每天住宿費為50元;裝修大房間每間需1000元,裝修小房間每間需600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得最大收益?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)本公司計劃2008年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲、乙電視臺的廣告收費標(biāo)準(zhǔn)分別為元/分鐘和200元/分鐘,規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某人上午7:00乘汽車以勻速v1千米/時(30≤v1≤100)從A地出發(fā)到距A地300千米的B地,在B地不作停留,然后騎摩托車以勻速v2千米/時 (4≤v2≤20)從B地出發(fā)到距B地50千米的C地,計劃在當(dāng)天16:00至?21:00時到達(dá)C地.設(shè)乘汽車、摩托車行駛的時間分別是?xy小時,則在xOy坐標(biāo)系中,滿足上述條件的x、y的范圍用陰影部分表示正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為 (   )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案