已知函數(shù)f(x)=
3-x2,x∈[-1,2]
x-3,x∈(2,5]

(Ⅰ)畫出f(x)的圖象;
(Ⅱ)寫出f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):函數(shù)圖象的作法,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)根據(jù)分段函數(shù),作出f(x)的圖象;
(Ⅱ)根據(jù)函數(shù)圖象之間的關(guān)系即可,寫出f(x)的單調(diào)遞增區(qū)間.
解答: 解:(1)函數(shù)f(x)的圖象如圖所示.

(2)由圖象可知,函數(shù)f(x)的單調(diào)遞增區(qū)間為[-1,],[2,5].
點(diǎn)評(píng):本題主要考查分段函數(shù)的圖象,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P長(zhǎng)軸長(zhǎng)為6橢圓C上的任意一點(diǎn),F(xiàn)1(-2,0),F(xiàn)2(2,0)是橢圓C的兩個(gè)焦點(diǎn),O為標(biāo)原點(diǎn),
OQ
=
PF
1
+
PF
2
,求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2|x+1|+2.
(1)作出f(x)的圖象;
(2)求方程f(x)-4=0根的個(gè)數(shù)及相應(yīng)的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=a x2-3x+3(a>0,且a≠1)在[0,2]上有最小值8,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是偶函數(shù)且在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A、y=x 
1
2
B、y=x2-1
C、y=|x|
D、y=2-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:存在x∈R,使x2-(a+1)x+a+4<0;命題q:方程
x2
a-3
-
y2
a-6
=1表示雙曲線.若命題“(¬p)∧q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}對(duì)任意的p,q∈N*滿足ap+q=ap+aq,且a1=-6,那么a5等于( 。
A、-21B、-30
C、-33D、-165

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1
1
2
,2
1
4
,3
1
8
,4
1
16
,…的一個(gè)通項(xiàng)公式為( 。
A、n+
1
2n
B、n-
1
2n
C、n+
1
2n+1
D、n+
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,1)上函數(shù)f(x)滿足f(-x)=-f(x),且f(1-a)+f(1-a2)<0,如果f(x)是(-1,1)上的減函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案