點C在線段AB上,且
AC
=
2
5
AB
,若
AC
BC
,則λ等于(  )
分析:由向量的運算,結合題意重新找到
AC
AB
的關系,比較已知可得關于λ的方程,解之可得.
解答:解:由題意可得
AC
BC
=λ(
AC
-
AB

=λ(
2
5
AB
-
AB
)=-
3
5
λ
AB
,
故可得
2
5
=-
3
5
λ
,解得λ=-
2
3

故選C
點評:本題考查向量的基本運算,涉及向量的共線和數(shù)乘,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知|
OA
|=2
,|
OB
|=2
,
OA
OB
=0
,點C在線段AB上,且∠AOC=60°,則
AB
OC
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•臺州一模)已知|
OA
|=|
OB
|=2,點C在線段AB上,且|
OC
|的最小值為1,則|
OA
-t
OB
|(t∈R)的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•眉山一模)設函數(shù)f(x)對其定義域內(nèi)的任意實數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內(nèi)任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設A,B,C是一個三角形的三個內(nèi)角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,線段AB=8,點C在線段AB上,且AC=2,P為線段CB上一動點,點A繞著C旋轉后與點B繞點P旋轉后重合于點D,設CP=x,△CPD的面積為f(x).
(1)求x的取值范圍;
(2)求f(x)的最大值.

查看答案和解析>>

同步練習冊答案