【題目】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點都在上,且點,,依逆時針次序排列,點的極坐標(biāo)為.
(1)求點,,的直角坐標(biāo);
(2)設(shè)為上任意一點,求點到直線距離的取值范圍.
【答案】(1)見解析;(2).
【解析】試題分析:
(1)由題意可得點的直角坐標(biāo),點的極坐標(biāo)為,直角坐標(biāo)為,點的極坐標(biāo)為,直角坐標(biāo)為.
(2)由題意可得直線的方程為,利用點到直線距離公式可得點到直線距離結(jié)合三角函數(shù)的性質(zhì)可得.
試題解析:
(1)由,可得點的直角坐標(biāo),
由已知,點的極坐標(biāo)為,可得兩點的直角坐標(biāo)為,
點的極坐標(biāo)為,同理可得兩點的直角坐標(biāo)為.
(2)直線的方程為,
設(shè)點 ,則點到直線距離
(其中,),
因為,所以,所以,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , O為坐標(biāo)原點,點P(1, )在橢圓上,連接PF1交y軸于點Q,點Q滿足 = .直線l不過原點O且不平行于坐標(biāo)軸,l與橢圓C有兩個交點A,B. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點M( ,0),若直線l過橢圓C的右焦點F2 , 證明: 為定值;
(Ⅲ)若直線l過點(0,2),設(shè)N為橢圓C上一點,且滿足 + =λ ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足 , ,其中n∈N+ . (I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(II)設(shè) ,求數(shù)列{cncn+2}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機(jī)會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.
(1)求小張在這次活動中獲得的獎金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求證:BD⊥平面ADE;
(2)求直線BE和平面CDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時間,隨機(jī)對名男生和名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:
表1:男、女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
男生人數(shù) | 5 | 25 | 30 | 25 | 15 |
女生人數(shù) | 10 | 20 | 40 | 20 | 10 |
(Ⅰ)若該中學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(Ⅱ)完成下表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?
上網(wǎng)時間少于60分鐘 | 上網(wǎng)時間不少于60分鐘 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:公式,其中
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面為正方形的四棱錐S﹣ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S﹣ABCD的外接球的表面積為( )
A.6π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若函數(shù)在R上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若,證明:當(dāng)時,.
參考數(shù)據(jù):,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com