【題目】某股票在30天內(nèi)每股的交易價格(元)與時間(天)組成有序數(shù)對,點落在如圖所示的兩條線段上,該股票在30天內(nèi)的日交易量(萬股)與時間(天)的部分數(shù)據(jù)如表所示:

1)根據(jù)提供的圖象,寫出該股票每股的交易價格與時間所滿足的函數(shù)關(guān)系式;

2)根據(jù)表中數(shù)據(jù)確定日交易量與時間的一次函數(shù)關(guān)系式;

3)在(1)(2)的結(jié)論下,若該股票的日交易額為(萬元),寫出關(guān)于的函數(shù)關(guān)系式,并求在這30天中第幾天的交易額最大,最大是多少?

【答案】1;(2,;(3)第15天的交易額最大,最大是125萬元

【解析】

1)根據(jù)圖像,直接寫出分段函數(shù)

2))設(shè),代入數(shù)據(jù),計算得到答案.

3)根據(jù)(1)(2)得到,分別計算最大值得到函數(shù)最大值.

1)根據(jù)圖像,直接寫出分段函數(shù):

2)設(shè)為常數(shù)),把,代入,

,解得

所以日交易量與時間的一次函數(shù)關(guān)系式為,

3)由(1)(2),可得

,

時,有最大值,即,此時;

,時,的增大而減小,

所以這30天中的第15天的交易額最大,最大是125萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】1100100個自然數(shù)中,每次取出不同的兩個數(shù),使它們的和大于100,不同取法共有(  ).

A. 50 B. 100 C. 1275 D. 2500

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 命題”,則是真命題

B. ”是“”的必要不充分條件

C. 命題“”的否定是:“,

D. ”是“上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)市場分析,廣饒縣馳中集團某蔬菜加工點,當月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當月產(chǎn)量為10噸時,月總成本為20萬元;當月產(chǎn)量為15噸時,月總成本最低為17.5萬元.

1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;

2)已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤;

3)當月產(chǎn)量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式

(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義在(﹣4,4)上的奇函數(shù),滿足f2)=1,當﹣4x≤0時,有fx)=

1)求實數(shù)a,b的值;

2)求函數(shù)fx)在區(qū)間(0,4)上的解析式,并利用定義證明其在該區(qū)間上的單調(diào)性;

3)解關(guān)于m的不等式fm2+1+>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解創(chuàng)建文明城市過程中學生對創(chuàng)建工作的滿意情況,相關(guān)部門對某中學的100名學生進行調(diào)查.得到如下的統(tǒng)計表:

滿意

不滿意

合計

男生

50

女生

15

合計

100

已知在全部100名學生中隨機抽取1人對創(chuàng)建工作滿意的概率為.

(1)在上表中相應(yīng)的數(shù)據(jù)依次為;

(2)是否有充足的證據(jù)說明學生對創(chuàng)建工作的滿意情況與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象向右平移個單位后,再將所得圖象的縱坐標不變,橫坐標伸長到原來的2倍,得到的函數(shù)的圖象關(guān)于軸對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案