【題目】在梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)M、N分別在邊AB、BC上,沿直線MD、DN、NM,分別將△AMD、△CDN、△BNM折起,點(diǎn)A,B,C重合于一點(diǎn)P.
(1)證明:平面PMD⊥平面PND;
(2)若cos∠DNP= ,PD=5,求直線PD與平面DMN所成角的正弦值.
【答案】
(1)證明:∵翻折前MB⊥NB,MA⊥DA,∴翻折后MP⊥NP,MP⊥PD,
∵NP∩PD=P,∴MP⊥平面PND,
∵M(jìn)P平面PMD,∴平面PMD⊥平面PND
(2)解:由題意得AM=BM=PM,BN=CN=PN,AD=CD=PN,
設(shè)AM=a,BN=b,作DH⊥BC,NH= ,
∴AD=BN+NH=b+ ,
∴ =3ab+ ,
S△MND=S梯形ABCD﹣S△AMD﹣S△MBN﹣S△DNC
=3ab+ ﹣
=ab+ ,
= = = .
PO⊥平面MPN,
PO= = = ,
sin ,
如圖, ,
解得a= ,b= ,代入上式得sin∠PDO= .
∴直線PD與平面DMN所成角的正弦值為 .
【解析】(1)推導(dǎo)出翻折后MP⊥NP,MP⊥PD,由此能證明平面PMD⊥平面PND.(2)由題意得AM=BM=PM,BN=CN=PN,AD=CD=PN,設(shè)AM=a,BN=b,作DH⊥BC,由此入手能求出直線PD與平面DMN所成角的正弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識(shí)可以得到問題的答案,需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(Ⅰ)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求的極小值;
(Ⅱ)若函數(shù)存在唯一零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有三個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( )
A.( ,2)
B.( ,2)
C.[ ,2)
D.( ,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax , y=xb , y=logcx的圖象如圖所示,則a,b,c的大小關(guān)系為 . (用“<”號(hào)連接)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , .
(Ⅰ)若 , 共線,求x的值;
(Ⅱ)若 ⊥ ,求x的值;
(Ⅲ)當(dāng)x=2時(shí),求 與 夾角θ的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(UA)∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券類穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票類風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知兩類產(chǎn)品各投資1萬元時(shí)的收益分別為0.125萬元和0.5萬元,如圖:
(Ⅰ)分別寫出兩類產(chǎn)品的收益y(萬元)與投資額x(萬元)的函數(shù)關(guān)系;
(Ⅱ)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD中底面四邊形ABCD是正方形,各側(cè)面都是邊長(zhǎng)為2的正三角形,M是棱PC的中點(diǎn).建立空間直角坐標(biāo)系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上. (Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若二面角D1﹣EC﹣D的大小為45°,求點(diǎn)B到平面D1EC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com