an=
1
n+1
+
1
n+2
+…+
1
2n
(n是正整數(shù)),則an+1=an+( 。
A、
1
2(n+1)
B、
1
2n+2
-
1
n+1
C、
1
2n+1
+
1
2n+2
-
1
n+1
D、
1
2n+1
+
1
2n+2
分析:本題主要是根據(jù)通項(xiàng)公式an由遞推關(guān)系導(dǎo)出an+1的通項(xiàng),根據(jù)表達(dá)式得到an+1與an的關(guān)系
解答:解:因?yàn)?span id="rnbft7y" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">an=
1
n+1
+
1
n+2
+…+
1
2n
(n是正整數(shù)),
所以an+1=
1
(n+1)+1
+
1
(n+1)+2
+…+
1
(n+!)+(n-1)
+
1
(n+1)+n
+
1
(n+1)+(n+1)
=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
=an+
1
2n+1
+
1
2n+2
-
1
n+1

故選擇C
點(diǎn)評(píng):本題主要通過(guò)數(shù)列的通項(xiàng)公式考查學(xué)生的遞推能力,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若an=
1n(n+1)
,則S5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,若an=
1
n(n+1)
,則S5等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an)的前n項(xiàng)和為Sn,若an=
1
n(n+1)
,則S2012等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

an=
1
n+1
+
n
(n∈N*),{an}
前n項(xiàng)和Sn=5,則n=
35
35

查看答案和解析>>

同步練習(xí)冊(cè)答案