10.如圖所示,函數(shù)$y={|x|^{\frac{1}{3}}}$的圖象大致為( 。
A.B.C.D.

分析 利用函數(shù)的奇偶性,函數(shù)的單調(diào)性,判斷選項即可.

解答 解:函數(shù)$y={|x|^{\frac{1}{3}}}$是偶函數(shù),所以A,B不成立,由x>0,y=${x}^{\frac{1}{3}}$函數(shù)的圖象可知選項C正確;
故選:C.

點評 本題考查函數(shù)的圖象的應用,函數(shù)的奇偶性以及函數(shù)的單調(diào)性的判斷,常見函數(shù)的性質(zhì)的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.設P是拋物線x2=8y上一動點,F(xiàn)為拋物線的焦點,A(1,2),則|PA|+|PF|的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.下列說法中正確的序號是③
①函數(shù)$y={log_2}({x^2}-2x-3)$的單調(diào)增區(qū)間是(1,+∞);
②函數(shù)y=lg(x+1)+lg(x-1)為偶函數(shù);
③若$x+\frac{1}{x}=2\sqrt{2}$,則$\frac{{1+{x^4}}}{x^2}$的值為6;
④函數(shù)y=2x的圖象與函數(shù)y=x2的圖象有且僅有2個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在同一坐標系中,若已知a>b>0,則方程a2x2+b2y2=1與 ax+by2=0的曲線大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=ex-mx的圖象為曲線C,若曲線C存在與直線$y=\frac{1}{2}x$垂直的切線,則實數(shù)m的取值范圍是m>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知定義在(0,+∞)的函數(shù)f(x),其導函數(shù)為f′(x),滿足:f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$總成立,則下列不等式成立的是(  )
A.e2e+3f(e)<eπ3f(π)B.e2e+3f(π)>eπ3f(e)C.e2e+3f(π)<eπ3f(e)D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知△ABC的三個角A,B,C的對邊分別為a,b,c,且A,B,C成等差數(shù)列,且b=$\sqrt{3}$.數(shù)列{an}是等比數(shù)列,且首項a1=$\frac{1}{2}$,公比為$\frac{sinA}{a}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.直線的方程為$x-\sqrt{3}y+2016=0$,則直線的傾斜角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,△ABC頂點的坐標為A(-1,2),B(1,4),C(3,2).
(1)求△ABC外接圓E的方程;
(2)若直線l經(jīng)過點(0,4),且與圓E相交所得的弦長為2$\sqrt{3}$,求直線l的方程;
(3)在圓E上是否存在點P,滿足PB2-2PA2=12,若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案