已知函數(shù)=+a+b的圖象在點P (1,0)處的切線與直線3x+y=0平行.則a、b的值分別為(  ).
A -3,  2    B  -3,  0      C   3,  2        D   3, -4
A
=3+2ax,切線的斜率k=3+2a,3+2a= -3 ∴a=-3又∵f(1)="a+b+1=0 " ∴b=2,故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

下圖是導函數(shù)的圖像,則原函數(shù)的圖像可能為(   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

則S的最大值為               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某廠生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件件次品則損失100元,已知該廠制造電子元件過程中,次品率與日產(chǎn)量的函數(shù)關系是
(1)將該廠的日盈利額(元)表示為日產(chǎn)量(件)的函數(shù);
(2)為獲最大盈利,該廠的日產(chǎn)量應定為多少件?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直線之間表示的是一條河流,河流的一側(cè)河岸(x軸)是一條公路,且公路隨時隨處都有公交車來往. 家住A(0,a)的某學生在位于公路上B(d,0)(d>0)處的學校就讀. 每天早晨該學生都要從家出發(fā),可以先乘船渡河到達公路上某一點,再乘公交車去學校,或者直接乘船渡河到達公路上B(d, 0)處的學校. 已知船速為,車速為(水流速度忽略不計).
(Ⅰ)若d=2a,求該學生早晨上學時,從家出發(fā)到達學校所用的最短時間;


 
 (Ⅱ)若,求該學生早晨上學時,從家出發(fā)到達學校所用的最短時間.

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

半徑為的球的內(nèi)接圓柱,問圓柱的底半徑與高多大,才能使圓柱的體積最大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)一列火車在平直的鐵軌上勻速行駛,由于遇到緊急情況,火車以速度v(t)=5-t+ (單位:m/s)緊急剎車至停止.求:
(1)從開始緊急剎車至火車完全停止所經(jīng)過的時間;
(2)緊急剎車后火車運行的路程比正常運行的路程少了多少米?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

a>0,f(x)=是R上的偶函數(shù),(1)求a的值;(2)證明: f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的導數(shù).

查看答案和解析>>

同步練習冊答案