解:(1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4為周期的周期函數(shù),
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函數(shù)與f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).
故知函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
又0≤x≤1時(shí),f(x)=x,且f(x)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,則f(x)的圖象如圖所示.
當(dāng)-4≤x≤4時(shí),f(x)的圖象與x軸圍成的圖形面積為S,則S=4S
△OAB=4×
=4.
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為[4k-1,4k+1](k∈Z),單調(diào)遞減區(qū)間[4k+1,4k+3](k∈Z)
分析:(1)利用f(x+2)=-f(x)得f(x)是以4為周期的周期函數(shù),從而可求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),確定函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,可得f(x)的圖象,從而可求圖象與x軸所圍成圖形的面積;
(3)根據(jù)周期性,結(jié)合函數(shù)的通項(xiàng),即可得到函數(shù)f(x)的單調(diào)區(qū)間.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性與周期性,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.