設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有(an-1)(an+3)=4Sn,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求證數(shù)列{an}是等差數(shù)列;
(Ⅱ)若數(shù)列的前n項(xiàng)和為Tn,試證明不等式<1成立.
【答案】分析:(I)先將題設(shè)中數(shù)列的和與項(xiàng)的關(guān)系式轉(zhuǎn)化為數(shù)列的項(xiàng)的關(guān)系式,根據(jù)等差數(shù)列的定義證明即可;
(II)求出an,再求出數(shù)列的通項(xiàng),用裂項(xiàng)相消法求出Tn,根據(jù)Tn的單調(diào)性證明即可.
解答:解:(Ⅰ)∵(an-1)(an+3)=4Sn,當(dāng)n≥2時(shí),(an-1-1)(an-1+3)=4Sn-1
兩式相減,得,即(an+an-1)(an-an-1-2)=0,又an>0,∴an-an-1=2.
當(dāng)n=1時(shí),(a1-1)(a1+3)=4a1,∴(a1+1)(a1-3)=0,又a1>0,∴a1=3.
所以,數(shù)是以3為首項(xiàng),2為公差的等差數(shù)列.
(Ⅱ)由(Ⅰ),a1=3,d=2,∴an=2n+1.
設(shè),n∈N*;∵an=2n+1,∴

∴Tn=b1+b2+b3+…+bn==
又∵,∴,
綜上所述:不等式成立.
點(diǎn)評(píng):本題考查裂項(xiàng)相消法求數(shù)列的和及利用定義證明等差數(shù)列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求證:an2=2Sn-an;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=3n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*)試確定λ的值,使得對(duì)任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),Sn是其前n項(xiàng)和,且對(duì)任意n∈N*都有an2=2Sn-an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正實(shí)數(shù),bn=log2an,若數(shù)列{bn}滿足b2=0,bn+1=bn+log2p,其中p為正常數(shù),且p≠1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)M,使得當(dāng)n>M時(shí),a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使結(jié)論成立的p的取值范圍和相應(yīng)的M的最小值;若不存在,請說明理由;
(3)若p=2,設(shè)數(shù)列{cn}對(duì)任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,問數(shù)列{cn}是不是等比數(shù)列?若是,請求出其通項(xiàng)公式;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn,點(diǎn)(an,Sn)在函數(shù)y=
1
8
x2+
1
2
x+
1
2
的圖象上,數(shù)列{bn}的通項(xiàng)公式為bn=
an+1
an
+
an
an+1
,其前n項(xiàng)和為Tn
(1)求an;   
(2)求證:Tn-2n<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇一模)設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn,對(duì)于任意正整數(shù)m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及數(shù)列{an}的通項(xiàng)公式;
(2)若a4=a2(a1+a2+1),求證:數(shù)列{an}成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案