在下列函數(shù)中,不具有奇偶性的是…(    )

①y=2(x-1)2-3  ②y=x2-3|x|+4  ③y=|x+1|+|x-1|  ④y=

A.①②③             B.①③④               C.①③              D.①

解析:由奇偶函數(shù)的定義可知只有y=2(x-1)2-3為非奇非偶函數(shù).

答案:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)同時(shí)滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱(chēng)為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱(chēng)為中值.有下列命題:
①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點(diǎn)A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
②函數(shù)y=
2-
x2
2
在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=
2
,f′(ξ)=-
2
2

③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對(duì)任意的x1、x2∈[a,b],x1<x2,有
1
2
[f(x1)+f(x2)]<f(
x1+x2
2
)恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
x1+x2
2

其中你認(rèn)為正確的所有命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

下列四個(gè)函數(shù)中, 在定義域內(nèi)不具有單調(diào)性的函數(shù)是

[  ]

A.y=cot(arccosx).  B.y=tan(arcsinx).

C.y=sin(arctanx).   D.y=cos(arctanx).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年四川省成都市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

如果函數(shù)f(x)同時(shí)滿足下列條件:①在閉區(qū)間[a,b]內(nèi)連續(xù),②在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo)且其導(dǎo)函數(shù)為f′(x),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ(a<ξ<b),使得f(b)-f(a)=f′(ξ)(b-a)成立,我們把這一規(guī)律稱(chēng)為函數(shù)f(x)在區(qū)間(a,b)內(nèi)具有“Lg”性質(zhì),并把其中的ξ稱(chēng)為中值.有下列命題:
①若函數(shù)f(x)在(a,b)具有“Lg”性質(zhì),ξ為中值,點(diǎn)A(a,f(a)),B(b,f(b)),則直線AB的斜率為f′(ξ);
②函數(shù)y=在(0,2)內(nèi)具有“Lg”性質(zhì),且中值ξ=,f′(ξ)=-;
③函數(shù)f(x)=x3在(-1,2)內(nèi)具有“Lg”性質(zhì),但中值ξ不唯一;
④若定義在[a,b]內(nèi)的連續(xù)函數(shù)f(x)對(duì)任意的x1、x2∈[a,b],x1<x2,有[f(x1)+f(x2)]<f()恒成立,則函數(shù)f(x)在(a,b)內(nèi)具有“Lg”性質(zhì),且必有中值ξ=
其中你認(rèn)為正確的所有命題序號(hào)是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:①冪函數(shù)中不存在既不是奇函數(shù)又不是偶函數(shù)的函數(shù);

②圖象不經(jīng)過(guò)點(diǎn)的冪函數(shù)一定不是偶函數(shù);

③如果兩個(gè)冪函數(shù)的圖象具有三個(gè)公共點(diǎn),那么這兩個(gè)冪函數(shù)相同;

④冪函數(shù)的圖象不可能在第四象限內(nèi)。其中正確的題號(hào)是                

查看答案和解析>>

同步練習(xí)冊(cè)答案