求下列函數(shù)的定義域與值域.
(1)y=23x+1
(2)y=
2x-4
考點(diǎn):函數(shù)的值域,函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)指數(shù)函數(shù)的性質(zhì),從而求出函數(shù)的定義域和值域;(2)根據(jù)二次函數(shù)的性質(zhì)結(jié)合指數(shù)函數(shù)的性質(zhì),從而得到函數(shù)的定義域和值域.
解答: 解:(1)函數(shù)的定義域是R,值域是(0,+∞),
(2)由2x-4≥0,解得:x≥2,
∴函數(shù)的定義域是[2,+∞),值域是:[0,+∞).
點(diǎn)評(píng):本題考查了函數(shù)的定義域,值域問(wèn)題,考查了指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={1,2,4,8},N={2,4,6,8},則M∩N=(  )
A、{2,4}
B、{2,4,8}
C、{1,6}
D、{1,2,4,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

底面半徑為3cm的圓柱體水槽中有半槽水,現(xiàn)放入兩個(gè)直徑等于水槽底面圓直徑的球,若水槽中的水剛好滿(mǎn)了,則水槽的高是
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2lnx-
1
2
ax2-3x,其中a為常數(shù).
(1)若當(dāng)x=1時(shí),f(x)取得極值,求a的值,并求出f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)+xf′(x)=-3x2+ax+1,問(wèn)是否存在實(shí)數(shù)a,使得當(dāng)a∈(0,1]時(shí),g(x)有最大值,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
x
ex,a,b∈R,且a>0
(1)若函數(shù)f(x)在x=-1處取得極值
1
e
,試求函數(shù)f(x)的解析式及單調(diào)區(qū)間;
(2)設(shè)g(x)=a(x-1)ex-f(x),g′(x)為g(x)的導(dǎo)函數(shù),若存在x0∈(1,+∞),使g(x0)+g′(x0)=0成立,求
b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用min{a,b}表示a,b兩數(shù)中的最小值,函數(shù)f(x)=min{|2x|,|2x+t|}的圖象關(guān)于直線x=-1對(duì)稱(chēng),若方程f(x)=m恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為(  )
A、(0,1]
B、(0,1)
C、(0,2]
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(
1
2
)
x
,
x<-1
x2+3x,x≥-1

(Ⅰ)解不等式f(x)<4;
(Ⅱ)當(dāng)x∈[-1,2]時(shí),f(x)≥mx-2(m∈R)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=λ(λ≠0)的一條漸近線方程是y=2x,則離心率e的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2分別是方程xax=1和xlogax=1的根(其中a>1),則x1+2x2的取值范圍( 。
A、(2
2
,+∞)
B、[2
2
,+∞)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案