若非零函數(shù)對(duì)任意實(shí)數(shù)均有,且當(dāng)時(shí)
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當(dāng)時(shí), 對(duì)恒有,求實(shí)數(shù)的取值范圍.
(1)證法一:

當(dāng)時(shí), 
 則
故對(duì)于恒有
證法二: 為非零函數(shù)   
(2)證明:令
, 又 即
 又 
為R上的減函數(shù)
(3)實(shí)數(shù)的取值范圍為

試題分析:(1)由題意可取代入等式,得出關(guān)于的方程,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025835045495.png" style="vertical-align:middle;" />為非零函數(shù),故,再令代入等式,可證,從而證明當(dāng)時(shí),有;(2)著眼于減函數(shù)的定義,利用條件當(dāng)時(shí),有,根據(jù)等式,令,可得,從而可證該函數(shù)為減函數(shù).(3)根據(jù),由條件可求得,將替換不等式中的,再根據(jù)函數(shù)的單調(diào)性可得,結(jié)合的范圍,從而得解.
試題解析:(1)證法一:

當(dāng)時(shí), 
 則
故對(duì)于恒有                             4分
證法二: 為非零函數(shù)   
(2)令
, 又 即
 又 
為R上的減函數(shù)                                 8分
(3),        10分
則原不等式可變形為
依題意有 對(duì)恒成立

故實(shí)數(shù)的取值范圍為       14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若且對(duì)任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是偶函數(shù),且上是增函數(shù),如果上恒成立,則實(shí)數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),則a,b,c的大小關(guān)系為(  )
A.c<a<bB.a(chǎn)<b<cC.a(chǎn)<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,既是偶函數(shù)又在上單調(diào)遞增的是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的零點(diǎn)個(gè)數(shù)為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)上的奇函數(shù),、,,則的解集是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的最大值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

時(shí),函數(shù)的值有正值也有負(fù)值,則的取值范圍是(   )
A.B.C.D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案