【題目】如圖,在ABC中,B90°ABBC2,PAB邊上一動點,PDBCAC于點D,現(xiàn)將PDA沿PD翻折至PDA1,EA1C的中點.

1)若PAB的中點證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求二面角PA1DC的正弦值.

【答案】(1)詳見解析(2)

【解析】

1)通過線線平行去得到線面平行,這也是線面平行證明中十分重要的手段.

2)利用空間向量求二面角的平面角的正弦值,向量法做題,一定要細心運算.

1)證明:取的中點,連接,.

因為的中點且,所以是△的中位線.所以PDBC,且PD.

又因為的中點,的中點為,所以是△的中位線,

所以EFBC,且EF,所以PDEF平行且相等,

所以四邊形是平行四邊形,所以.

因為平面平面,所以平面.

2)解:因為平面,所以.又因為的中點,

所以,即的中點.可得,的中點.

,,,沿翻折至,且平面平面,

利用面面垂直的性質(zhì)可得平面,以點為原點建立坐標系如圖所示,

,,,,.

設(shè)平面的法向量為,

容易得到平面的法向量,

設(shè)二面角的大小為,有

,所以

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2018年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮.某大學社團調(diào)查了該校文學院300名學生每天誦讀詩詞的時間(所有學生誦讀時間都在兩小時內(nèi)),并按時間(單位:分鐘)將學生分成六個組:,,,,,經(jīng)統(tǒng)計得到了如圖所

示的頻率分布直方圖

(Ⅰ)求頻率分布直方圖中的值,并估計該校文學院的學生每天誦讀詩詞的時間的平均數(shù);

(Ⅱ)若兩個同學誦讀詩詞的時間滿足,則這兩個同學組成一個“Team”,已知從每天誦讀時間小于20分鐘和大于或等于80分鐘的所有學生中用分層抽樣的方法抽取了5人,現(xiàn)從這5人中隨機選取2人,求選取的兩人能組成一個“Team”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有除顏色外完全相同的黑球和白球共7個,其中白球3個,現(xiàn)有甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時終止.每個球在每一次被取出的機會是等可能的.

1)求取球2次即終止的概率;

2)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,B90°ABBC2,PAB邊上一動點,PDBCAC于點D,現(xiàn)將PDA沿PD翻折至PDA1EA1C的中點.

1)若PAB的中點,證明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求四棱錐A1PBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用三種不同的顏色填涂如圖3×3方格中的9個區(qū)域,要求每行、每列的三個區(qū)域都不同色,則不同的填涂方法種數(shù)共有(  )

A.48B.24C.12D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓

(1)過的直線截圓所得的弦長為,求該直線的斜率;

(2)動圓同時平分圓與圓的周長

求動圓圓心的軌跡方程;

問動圓是否過定點,若經(jīng)過,則求定點坐標;若不經(jīng)過,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,平面平面,△ABC為等腰三角形,的中點,的中點,且,

(Ⅰ)證明:平面

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中:相關(guān)系數(shù)用來衡量兩個變量之間線性關(guān)系的強弱,越接近于1,相關(guān)性越弱;回歸直線過樣本點中心相關(guān)指數(shù)用來刻畫回歸的效果,越小,說明模型的擬合效果越不好.兩個模型中殘差平方和越小的模型擬合的效果越好.正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案