【題目】算籌是在珠算發(fā)明以前我國(guó)獨(dú)創(chuàng)并且有效的計(jì)算工具,為我國(guó)古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌記數(shù)法中,以“縱式”和“橫式”兩種方式來(lái)表示數(shù)字,如下表:
數(shù)字形式 | |||||||||
縱式 | |||||||||
橫式 |
表示多位數(shù)時(shí),個(gè)位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類(lèi)推,遇零則置空,如圖所示.如果把根算籌以適當(dāng)?shù)姆绞饺糠湃胂旅娴谋砀裰校敲纯梢员硎镜娜粩?shù)的個(gè)數(shù)為______.
【答案】
【解析】
按每一位算籌的根數(shù)分類(lèi),列舉出所有的情況,根據(jù)根或根以上的算籌可以表示兩個(gè)數(shù)字,計(jì)算出每種情況下所表示的三位數(shù)的個(gè)數(shù),利用分類(lèi)加法計(jì)數(shù)原理可得結(jié)果.
按每一位算籌的根數(shù)分類(lèi)一共有種情況,分別為、、、、、、、、、、、、、、,
根或根以上的算籌可以表示兩個(gè)數(shù)字,運(yùn)用分步乘法計(jì)數(shù)原理,得上面情況能表示的三位數(shù)字個(gè)數(shù)分別為:、、、、、、、、、、、、、、,
根據(jù)分類(lèi)加法計(jì)數(shù)原理,得根算籌能表示的三位數(shù)字個(gè)數(shù)為:
.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)=,為的導(dǎo)函數(shù).若和的零點(diǎn)均在集合中,則( )
A.在上單調(diào)遞增B.在上單調(diào)遞增
C.極小值為D.最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,將的圖像向右平移個(gè)單位后,再保持縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到函數(shù)的圖象.
(1)求函數(shù)在上的值域及單調(diào)遞增區(qū)間;
(2)若,且,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,焦距為,過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),若,且,則橢圓的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊,那么下面說(shuō)法正確的是_________.
(1) 平面平面 (2)四面體的體積是
(3)二面角的正切值是 (4)與平面所成角的正弦值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)若與交于,兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代著名數(shù)學(xué)經(jīng)典,其中對(duì)勾股定理的論述,比西方早一千多年,其中有這樣一個(gè)問(wèn)題:“今有圓材埋在壁中,不知大小;以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長(zhǎng)1尺,問(wèn)這塊圓柱形木料的直徑是多少?長(zhǎng)為0.5丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).己知弦尺,弓形高寸,估算該木材鑲嵌墻內(nèi)部分的體積約為( )(注:一丈=10尺=100寸,)
A.300立方寸B.305.6立方寸C.310立方寸D.316.6立方寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)點(diǎn)的直線交于,兩點(diǎn),圓是以線段為直徑的圓.
(1)證明:坐標(biāo)原點(diǎn)在圓上;
(2)設(shè)圓過(guò)點(diǎn),求直線與圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com