【題目】已知二次函數(shù)f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的圖象與x軸有且僅有一個交點,求b2+c2+2的取值范圍;
(2)在b≥0的條件下,若f(x)的定義域[﹣1,0],值域也是[﹣1,0],符合上述要求的函數(shù)f(x)是否存在?若存在,求出f(x)的表達式,若不存在,請說明理由.
【答案】
(1)解:由于f(x)的圖象與x軸有且僅有一個交點,故△=0,
即△=b2﹣4c=0b2=4c,
則b2+c2+2=c2+4c+2=(c+2)2﹣4≥﹣4;
(2)解:設符合條件的f(x)存在,
∵函數(shù)圖象的對稱軸是x=﹣ ,
又b≥0,∴﹣ ≤0.
①當﹣ <﹣ ≤0,即0≤b<1時,
函數(shù)x=﹣ 有最小值﹣1,則 或 (舍去).
②當﹣1<﹣ ≤﹣ ,即1≤b<2時,則 (舍去)或 (舍去).
③當﹣ ≤﹣1,即b≥2時,函數(shù)在[﹣1,0]上單調遞增,則 ,解得 ,
綜上所述,符合條件的函數(shù)有兩個,
f(x)=x2﹣1或f(x)=x2+2x
【解析】(1)根據(jù)二次函數(shù)的性質得到判別式△=0,求出b2=4c,代入b2+c2+2,求出其范圍即可;(2)二次函數(shù)f(x)=x2+bx+c(b≥0,c∈R)的對稱軸是x=﹣ ,定義域為[﹣1,0],按照對稱軸在定義域[﹣1,0]內(nèi)、在[﹣1,0]的左邊和在[﹣1,0]的右邊三種情況分別求函數(shù)的值域,令其和題目條件中給出的值域相等,求b和c.
【考點精析】掌握二次函數(shù)的性質是解答本題的根本,需要知道當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學 來源: 題型:
【題目】某廠家擬在2017年舉行促銷活動,經(jīng)調查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用(單位:萬元)()滿足( 為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬元.每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2017年該產(chǎn)品的利潤(單位:萬元)表示為年促銷費用(單位:萬元)的函數(shù);
(2)該廠家2017年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),則b的取值范圍為( )
A.
B.(2﹣ ,2+ )
C.[1,3]
D.(1,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點, .
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,連接(為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年11月,第十一屆中國(珠海)國際航空航天博覽會開幕式當天,殲-20的首次亮相給觀眾留下了極深的印象.某參賽國展示了最新研制的兩種型號的無人機,先從參觀人員中隨機抽取100人對這兩種型號的無人機進行評價,評價分為三個等級:優(yōu)秀、良好、合格.由統(tǒng)計信息可知,甲型號無人機被評為優(yōu)秀的頻率為、良好的頻率為;乙型號無人機被評為優(yōu)秀的頻率為,且被評為良好的頻率是合格的頻率的5倍.
(1) 求這100人中對乙型號無人機評為優(yōu)秀和良好的人數(shù);
(2) 如果從這100人中按對甲型號無人機的評價等級用分層抽樣的方法抽取5人,然后從其他對乙型號無人機評優(yōu)秀、良好的人員中各選取1人進行座談會,會后從這7人中隨機抽取2人進行現(xiàn)場操作體驗活動,求進行現(xiàn)場操作體驗活動的2人都評優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內(nèi),動點與兩定點, 連線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設點, 是軌跡上相異的兩點.
(Ⅰ)過點, 分別作拋物線的切線, , 與兩條切線相交于點,證明: ;
(Ⅱ)若直線與直線的斜率之積為,證明: 為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間共有名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ) 根據(jù)莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com