分析 根據(jù)三棱錐為正三棱錐,可證明出AC⊥SB,結(jié)合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三條側(cè)棱兩兩互相垂直.最后利用公式求出外接圓的直徑,結(jié)合球的表面積公式,可得正三棱錐S-ABC的外接球的表面積.
解答 解:∵M(jìn),N分別是棱SC、BC的中點(diǎn),
∴MN∥SB,
MN⊥AM,可得SB⊥AM,
由正三棱錐的性質(zhì)可得SB⊥AC,
∴SB⊥平面SAC⇒SB⊥SA且SB⊥AC,
∵三棱錐S-ABC是正三棱錐
∴SA、SB、SC三條側(cè)棱兩兩互相垂直.
∵側(cè)棱SA=$\sqrt{3}$,
∴正三棱錐S-ABC的外接球的直徑為:2R=3
外接球的半徑為R=$\frac{3}{2}$
∴正三棱錐S-ABC的外接球的表面積是S=4πR2=9π
故答案為:9π.
點(diǎn)評 本題以正三棱錐中的垂直關(guān)系為例,考查了空間線面垂直的判定與性質(zhì),以及球內(nèi)接多面體等知識點(diǎn),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {1,2,3} | C. | {0,1,2,3} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2+\sqrt{6}$ | B. | 2 | C. | $2+\sqrt{10}$ | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com