8.在△ABC中,若c=2acosB,則△ABC的形狀一定是( 。
A.銳角三角形B.直角三角形
C.等腰或直角三角形D.等腰三角形

分析 由余弦定理可把角的余弦化為邊,經(jīng)運(yùn)算易得結(jié)果.

解答 解:由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
故c=2acosB=2a×$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-^{2}}{c}$,
即c2=a2+c2-b2,故a2=b2,
可得:a=b,
可得:△ABC為等腰三角形,
故選:D.

點(diǎn)評(píng) 本題為三角形形狀的判斷,由正余弦定理進(jìn)行邊角互化是解決此類問(wèn)題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,9),那么函數(shù)f(x)的單調(diào)增區(qū)間是(  )
A.[3,+∞)B.[0,+∞)C.(-∞,0]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求值:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
(2)已知x+$\frac{1}{x}$=3,求x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{2}{x}$
(1)若2f(1)=f(2),求a的值;
(2)判斷f(x)在(-∞,0)上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合M={x|x>1},P={x|x2-6x+9=0},則下列關(guān)系中正確的是( 。
A.M=PB.P?MC.M?PD.M∪P=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,已知sinA:sinB:sinC=3:5:7,則此三角形的最大內(nèi)角為(  )
A.75°B.120°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,0),\overrightarrow c=(3,-4)$,若λ為實(shí)數(shù)且$(\overrightarrow a+λ\overrightarrow b)$∥$\overrightarrow c$,則λ=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.給出下列函數(shù)①$f(x)=(\frac{1}{2})^{x}$; ②f(x)=x2; ③f(x)=x3; ④$f(x)={x}^{\frac{1}{2}}$;⑤f(x)=log2x.其中滿足條件f $(\frac{{x}_{1}+{x}_{2}}{2})$>$\frac{f({x}_{1})+f({x}_{2})}{2}$  (0<x1<x2)的函數(shù)的序號(hào)是④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{{x^2}+a}}{x}$(常數(shù)a∈R).
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案