已知函數(shù)f(x)滿足f(x)=f(4-x),且當x>2時,f(x)是增函數(shù),若a=f(1.20.9),b=f(0.91.2),c=f(log
13
9
),則a,b,c大小關系為
a<b<c
a<b<c
分析:由題意可得函數(shù)f(x)的圖象關于直線x=2對稱,在(-∞,2)上是減函數(shù),結(jié)合 2>1.20.9 >1,0<0.91.2<1,log
1
3
9
=-2,從而判斷a,b,c大小關系.
解答:解:由f(x)=f(4-x)可得,函數(shù)f(x)的圖象關于直線x=2對稱,又當x>2時,f(x)是增函數(shù),
故在(-∞,2)上是減函數(shù).
∵2>1.20.9 >1,0<0.91.2<1,log
1
3
9
=-2,
∴a<b<c,
故答案為 a<b<c.
點評:本題主要考查函數(shù)的單調(diào)性的應用,函數(shù)的對稱性的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時,求f(n)的表達式;
(2)設bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當x≥0時,曲線y=f(x)在點M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
(3)設函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點個數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當x≥1時,f(x)=f(x-1);當x<1時,f(x)=2x,則f(log27)=( 。

查看答案和解析>>

同步練習冊答案