【題目】已知圓C:x2+y2+2x﹣4y+1=0,O為坐標原點,動點P在圓C外,過P作圓C的切線,設(shè)切點為M.
(1)若點P運動到(1,3)處,求此時切線l的方程;
(2)求滿足條件|PM|=|PO|的點P的軌跡方程.
【答案】
(1)解:把圓C的方程化為標準方程為(x+1)2+(y﹣2)2=4,∴圓心為C(﹣1,2),半徑r=2.
當l的斜率不存在時,此時l的方程為x=1,C到l的距離d=2=r,滿足條件.
當l的斜率存在時,設(shè)斜率為k,得l的方程為y﹣3=k(x﹣1),即kx﹣y+3﹣k=0,
則 =2,解得k=﹣ .∴l(xiāng)的方程為y﹣3=﹣ (x﹣1),即3x+4y﹣15=0.
綜上,滿足條件的切線l的方程為x=1,或3x+4y﹣15=0
(2)解:設(shè)P(x,y),則|PM|2=|PC|2﹣|MC|2=(x+1)2+(y﹣2)2﹣4,|PO|2=x2+y2.
∵|PM|=|PO|,∴(x+1)2+(y﹣2)2﹣4=x2+y2,整理,得2x﹣4y+1=0,
∴點P的軌跡方程為2x﹣4y+1=0
【解析】(1)對切線的斜率是否存在分類討論,用點斜式求得直線的方程.(2)設(shè)出P的坐標,代入平面內(nèi)兩點間的距離公式,化簡得軌跡方程.
科目:高中數(shù)學 來源: 題型:
【題目】供電部門對某社區(qū)位居民2016年11月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是( )
A. 11月份人均用電量人數(shù)最多的一組有人
B. 11月份人均用電量不低于度的有人
C. 11月份人均用電量為度
D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(量大供應(yīng)量)如下表所示:
資源\消耗量\產(chǎn)品 | 甲產(chǎn)品(每噸) | 乙產(chǎn)品(每噸) | 資源限額(每天) |
煤(t) | 9 | 4 | 360 |
電力(kwh) | 4 | 5 | 200 |
勞動力(個) | 3 | 10 | 300 |
利潤(萬元) | 6 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程x2+y2﹣2(m+3)x+2(1﹣4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有最值,寫出的取值范圍.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小麗今天晚自習準備復習歷史、地理或政治中的一科,她用數(shù)學游戲的結(jié)果來決定選哪一科,游戲規(guī)則是:在平面直角坐標系中,以原點為起點,再分別以, , , , 這5個點為終點,得到5個向量,任取其中兩個向量,計算這兩個向量的數(shù)量積,若,就復習歷史,若,就復習地理,若,就復習政治.
(1)寫出的所有可能取值;
(2)求小麗復習歷史的概率和復習地理的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com