【題目】已知橢圓上的點(diǎn)到兩個焦點(diǎn)的距離之和為,短軸長為,直線與橢圓交于、兩點(diǎn).

1求橢圓的方程;

2若直線與圓相切,探究是否為定值,如果是定值,請求出該定值;如果不是定值,請說明理由

【答案】12

【解析】試題分析:(1)由已知得 由此能求出橢圓的方程.
(2)當(dāng)直線 軸時, .當(dāng)直線軸不垂直時,設(shè)直線 直線與與圓 的交點(diǎn)M(x1,y1),N(x2,y2),由直線與圓相切,得 ,聯(lián)立 ,得( ,由此能證明 為定值.

試題解析:

1由題意得

2當(dāng)直線軸時,因?yàn)橹本與圓相切,所以直線方程為

當(dāng)時,得M、N兩點(diǎn)坐標(biāo)分別為,

當(dāng)時,同理

當(dāng)軸不垂直時,

設(shè),由,

,

聯(lián)立

, , =

綜上, (定值)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在高三抽取了500名學(xué)生,記錄了他們選修A、B、C三門課的選修情況,如表:

科目

學(xué)生人數(shù)

A

B

C

120

60

70

50

150

50

(Ⅰ)試估計(jì)該校高三學(xué)生在A、B、C三門選修課中同時選修2門課的概率.

(Ⅱ)若該高三某學(xué)生已選修A,則該學(xué)生同時選修B、C中哪門的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線 的準(zhǔn)線上,記的焦點(diǎn)為,過點(diǎn)且與軸垂直的直線與拋物線交于, 兩點(diǎn),則線段的長為( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機(jī)抽取了名學(xué)生的成績得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

(2)若用分層抽樣的方法從分?jǐn)?shù)在的學(xué)生中共抽取人,該人中成績在的有幾人?

(3)在(2)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為, ,坐標(biāo)原點(diǎn)為,且線段, , 的長度成等差數(shù)列.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過點(diǎn)的一條直線交橢圓于點(diǎn), ,交軸于點(diǎn),使得線段被點(diǎn) 三等分,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的點(diǎn).

)求證:平面平面;

的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在實(shí)數(shù)a,使得函數(shù)y=cos2x+asinx+ 在閉區(qū)間[0,π]的最大值是0?若存在,求出對應(yīng)的a的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1寫出函數(shù)的值域,單調(diào)區(qū)間(不必證明);

2是否存在實(shí)數(shù)使得的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)在平面上有兩個向量a=(cos 2α,sin 2α)(0≤α<π),b=,ab不共線.

(1)求證:向量a+ba-b垂直;

(2)當(dāng)向量a+ba-b的模相等時,α的大小.

查看答案和解析>>

同步練習(xí)冊答案