設函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)已知對任意成立,求實數(shù)的取值范圍。
(Ⅰ)見解析(Ⅱ)
本試題主要是考查了導數(shù)在研究函數(shù)中的運用,以及導數(shù)求解最值的綜合運用,解不等式。
(1)根據(jù)已知解析式先求解導數(shù),然后令導數(shù)大于零或者小于零得到單調(diào)區(qū)間。
(2)根據(jù)不等式兩邊取對數(shù),既可以得到不等式關(guān)系式,利用由(1)的結(jié)果可知函數(shù)的最大值,從而得到結(jié)論。
解(Ⅰ)   則  列表如下

(Ⅱ) 在  兩邊取對數(shù), 得 ,由于  
所以         (1)
由(1)的結(jié)果可知,當時, ,
為使(1)式對所有成立,當且僅當,即
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),(e為自然對數(shù)的底數(shù))
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在上無零點,求a的最小值;
(III)若對任意給定的,在上總存在兩個不同的,使得成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(I)證明:是函數(shù)在區(qū)間上遞增的充分而不必要的條件;
(II)若時,滿足恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于三次函數(shù),定義的導函數(shù)的導函數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”,可以證明,任何三次函數(shù)都有“拐點”,任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,請你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點對稱:
②存在三次函數(shù)有實數(shù)解,點為函數(shù)的對稱中心;
③存在三次函數(shù)有兩個及兩個以上的對稱中心;
④若函數(shù),則,
其中正確命題的序號為__          _____(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分) 已知R,函數(shù)(x∈R).
(1)當時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)是否能在R上單調(diào)遞減,若能,求出的取值范圍;若不能,請說明理由;
(3)若函數(shù)f(x)在上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題9分)
求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以下四圖,都是同一坐標系中三次函數(shù)及其導函數(shù)的圖像,其中一定不正確的序號是 (  )
A.①、②B.①、③C.③、④D.①、④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知函數(shù)f(x)=lnx-(a≠0)
(1)若a=3,b=-2,求f(x)在[,e]的最大值;
(2)若b=2,f(x)存在單調(diào)遞減區(qū)間,求a的范圍.

查看答案和解析>>

同步練習冊答案