2.下列變量間的關(guān)系屬于線性關(guān)系的是( 。
A.球的體積與表面積之間的關(guān)系
B.正方形面積和它的邊長(zhǎng)之間的關(guān)系
C.家庭收入愈多,其消費(fèi)支出也有增長(zhǎng)的趨勢(shì)
D.價(jià)格不變的條件下,商品銷售額與銷量量之間的關(guān)系

分析 根據(jù)函數(shù)關(guān)系是兩個(gè)變量是唯一確定的關(guān)系,相關(guān)關(guān)系是有關(guān)系但不唯一確定,對(duì)4個(gè)選項(xiàng)進(jìn)行判斷即可.

解答 解:對(duì)于A,球的體積與表面積都是半徑R的函數(shù),所以它們是確定的函數(shù)關(guān)系,
對(duì)于B,正方形面積和它的邊長(zhǎng)是確定的函數(shù)關(guān)系,
對(duì)于C,家庭收入與消費(fèi)支出是正相關(guān)關(guān)系,
對(duì)于D,價(jià)格一定時(shí),商品銷售額與銷量量之間是確定的函數(shù)關(guān)系.
故選:C.

點(diǎn)評(píng) 本題考查了判斷兩個(gè)變量是否為相關(guān)關(guān)系的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(1)若f(x)=sinxcos2x,則f′(x)=cosxcos2x-2sinxsin2x;
(2)若f(x)=exsin$\frac{1}{2}$x,則f′(x)=exsin$\frac{1}{2}$x+$\frac{1}{2}$excosx$\frac{1}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求以兩條直線3x-2y+12=0和4x+3y-1=0的交點(diǎn)為圓心,且與y軸相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a≥0,若y═cos2x-asinx+b的最大值為0,最小值為-4.
(1)求a,b的值;
(2)求使y取最大值、最小值時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求垂直于直線3x-2y+4=0,且過直線2x-3y+1=0和3x-4y-2=0的交點(diǎn)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程
(1)焦點(diǎn)坐標(biāo)分別為(0,-4),(0,4),a=5
(2)a+c=10,a-c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在(0,2π)內(nèi),與$-\frac{7π}{6}$終邊相同的角是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x}+\sqrt{x-1}}}$,程序框圖如圖所示,若輸出的結(jié)果S=10,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤100?B.n≤99?C.n>100?D.n>99?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對(duì)定義域分別為D1,D2的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$.若f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),則h(x)的解析式h(x)=$\left\{\begin{array}{l}{(x-2)(-2x+3),1≤x≤2}\\{x-2,x>2}\\{-2x+3,x<1}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案