【題目】不等式(x+ )( ﹣x)≥0的解集是(
A.{x|﹣ ≤x≤ }
B.{x|x≤﹣ 或x≥ }??
C.{x|x<﹣ 或x> }
D.{x|﹣ <x< }

【答案】A
【解析】解:不等式(x+ )( ﹣x)≥0可化為 (x+ )(x﹣ )≤0,
解得﹣ ≤x≤ ,
所以不等式的解集為{x|﹣ ≤x≤ }.
故選:A.
【考點精析】本題主要考查了解一元二次不等式的相關(guān)知識點,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a4=7,a10=19,其前n項和為Sn
(1)求數(shù)列{an}的通項公式an及Sn;
(2)若等比數(shù)列{bn}的前n項和為Tn , 且b1=2,b4=S4 , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等邊三角形的邊長為4,四邊形為正方形,平面平面, , , 分別是線段, , , 上的點.

(Ⅰ)如圖①,若為線段的中點, ,證明: 平面;

(Ⅱ)如圖②,若, 分別為線段 的中點, , ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+b與圓x2+y2﹣2x+4y﹣4=0相交于A,B兩點,O為坐標(biāo)原點,若 =0,則實數(shù)b的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用an的信息如圖.
(1)求an;
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的上、下兩個焦點分別為, ,過的直線交橢圓于, 兩點,且的周長為8,橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點,直線 與橢圓有且僅有一個公共點,點, 是直線上的兩點,且, ,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣4x﹣4y+4=0,點E(3,4).
(1)過點E的直線l與圓交與A,B兩點,若AB=2 ,求直線l的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點記為M,O為坐標(biāo)原點,且滿足PM=PO,求使得PM取得最小值時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x),f′(x)是其導(dǎo)數(shù),且滿足f(x)+f′(x)>2,ef(1)=2e+4,則不等式exf(x)>4+2ex(其中e為自然對數(shù)的底數(shù))的解集為(
A.(1,+∞)
B.(﹣∞,0)∪(1,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=
(1)求三棱錐A﹣PCD的體積;
(2)問:棱PB上是否存在點E,使得PD∥平面ACE?若存在,求出 的值,并加以證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案