已知數(shù)列{an}滿足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)之和Sn,求Sn,并證明:
Sn
2n
>2n-3.
(Ⅰ)∵an=2an-1+2n(n≥2,且n∈N*),
an
2n
=
an-1
2n-1
+1
,即
an
2n
-
an-1
2n-1
=1
(n≥2,且n∈N*),…(3分)
所以,數(shù)列{
an
2n
}是等差數(shù)列,公差d=1,首項(xiàng)
1
2
,…(5分)
于是
an
2n
=
1
2
+(n-1)d
=
1
2
+(n-1)•1
=n-
1
2
,
an=(n-
1
2
)•2n
.…(7分)
(Ⅱ)∵Sn=
1
2
•2+
3
2
•22+
5
2
23+…+
(n-
1
2
)•2n,①
∴2Sn=
1
2
22+
3
2
23+
5
2
24
+…+(n-
1
2
)•2n+1
,②…(9分)
①-②,得-Sn=1+22+23+…+2n-(n-
1
2
)•2n+1

=2+22+23+…+2n-(n-
1
2
)•2n+1-1

=
2(1-2n)
1-2
-(n-
1
2
)•2n+1-1

=(3-2n)•2n-3,…(12分)
Sn=(2n-3)•2n+3>(2n-3)•2n,
Sn
2n
>2n-3.…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案