已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明:BN⊥平面C1B1N;
(Ⅱ)求二面角C-NB1-C1的余弦值;M為AB中點(diǎn),在線段CB上是否存在一點(diǎn)P,使得MP∥平面CNB1,若存在,求出BP的長;若不存在,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)
分析:(1)先將三視圖還原實(shí)物圖,以BA,BB1,BC分別為x,y,z軸建立空間直角坐標(biāo)系,
BN
NB1
=0與
BN
B1C1
=0得到BN⊥NB1,BN⊥B1C1,而NB1與B1C1相交于B1,滿足線面垂直的判定定理;
(2)先求平面C1B1N的一個(gè)法向量和平面NCB1的一個(gè)法向量,然后利用向量的夾角公式求出兩法向量夾角的余弦值,
根據(jù)圖可知,所求二面角為銳角,從而得到二面角C-NB1-C1的余弦值;
(3)先設(shè)出點(diǎn)P的坐標(biāo),從而表示出
MP
,然后根據(jù)MP∥平面CNB1,則
MP
與平面NCB1的一個(gè)法向量垂直建立等式關(guān)系,即可求出點(diǎn)P,最后再求出BP的長即可.
解答:(1)證明∵該幾何體的正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形,
∴BA,BC,BB1兩兩垂直.以BA,BB1,BC分別為x,y,z軸建立空間直角坐標(biāo)系,(1分)
則B(0,0,0),N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4)
精英家教網(wǎng)
BN
NB1
=(4,4,0)•(-4,4,0)=-16+16=0
BN
B1C1
=(4,4,0)•(0,0,4)=0(3分)
∴BN⊥NB1,BN⊥B1C1
又NB1與B1C1相交于B1,
∴BN⊥平面C1B1N.(5分)
(2)∵BN⊥平面C1B1N,
BN
是平面C1B1N的一個(gè)法向量
n1
=(4,4,0),(6分)
設(shè)
n2
=(x,y,z)為平面NCB1的一個(gè)法向量,
n2
CN
=0
n2
NB1
=0 
?
(x,y,z)•(4,4,-4)=0
(x,y,z)•(4,-4,0)=0
?
x+y-z=0
x-y=0
,
n2
=(1,1,2),(8分)
cos<
n1
,
n2
>=
n1
n2
|
n1
|•|
n2
|
=
4+4
16+16
1+1+4
=
1
3
=
3
3

由圖可知,所求二面角為銳角,
所以,所求二面角C-NB1-C1的余弦值為
3
3
.(10分)
(3)∵M(jìn)(2,0,0).設(shè)P(0,0,a)(0≤a≤4)為BC上一點(diǎn),則
MP
=(-2,0,a),
∵M(jìn)P∥平面CNB1
MP
n2
?
MP
n2
=(-2,0,a)•(1,1,2)=-2+2a=0?a=1.(13分)
∴在CB上存在一點(diǎn)P(0,0,1),使得MP∥平面CNB1,且BP=1(14分)
點(diǎn)評:本小題主要考查直線與平面的位置關(guān)系、平面與平面的位置關(guān)系、二面角及其平面角等有關(guān)知識,考查空間想象能力和思維能力,應(yīng)用向量知識解決立體幾何問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
精英家教網(wǎng)精英家教網(wǎng)
(Ⅰ)若M為CB中點(diǎn),證明:MA∥平面CNB1;
(Ⅱ)求這個(gè)幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(1)求證:BN⊥平面C1B1N;
(2)設(shè)θ 為直線C1N與平面CNB1所成的角,求sinθ 的值;
(3)設(shè)M為AB中點(diǎn),在BC邊上找一點(diǎn)P,使MP∥平面CNB1并求
BPPC
的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的直觀圖與它的三視圖,其中俯視圖為正三角形,其它兩個(gè)視圖是矩形.已知D是這個(gè)幾何體的棱A1C1上的中點(diǎn).

(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:直線BC1∥平面AB1D;
(Ⅲ)求證:直線B1D⊥平面AA1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:BC∥平面C1B1N;
(2)求證:BN⊥平面C1B1N;
(3)設(shè)M為AB中點(diǎn),在BC邊上找一點(diǎn)P,使MP∥平面CNB1,并求
BPPC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•樂山一模)已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明:BN⊥平面C1NB1;
(Ⅱ)求平面CNB1與平面C1NB1所成角的余弦值;

查看答案和解析>>

同步練習(xí)冊答案