18.已知向量$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,2).
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值;
(Ⅱ)λ為何值時(shí),$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直.

分析 (Ⅰ)由題意利用兩個(gè)向量的數(shù)量積的定義求得$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.
(Ⅱ)根據(jù)($\overrightarrow{a}$+λ$\overrightarrow$)•$\overrightarrow{a}$=0,求得λ的值.

解答 解:(Ⅰ)由題意可得$\left|{a}\right|=\sqrt{{{(-3)}^2}+{4^2}}=5$,$\left|\right|=\sqrt{{2^2}+{2^2}}=2\sqrt{2}$,$\overrightarrow{a}•\overrightarrow$=x1x2+y1y2=-6+8=2,
∴$cosθ=\frac{{{a}•}}{{\left|{a}\right|\left|\right|}}=\frac{1}{{5\sqrt{2}}}=\frac{{\sqrt{2}}}{10}$,即 $\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為$\frac{\sqrt{2}}{10}$.
(Ⅱ)$\overrightarrow{a}$+λ$\overrightarrow$=(-3+2λ,4+2λ),∵$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直,
則($\overrightarrow{a}$+λ$\overrightarrow$)•$\overrightarrow{a}$=(-3)(-3+2λ)+4(4+2λ)=0,解得$λ=-\frac{25}{2}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量垂直的條件,兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=e|x|-x3的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足$\overrightarrow a=({1,\sqrt{3}}),|{\overrightarrow b}|=1$,且$\overrightarrow a+λ\overrightarrow b=\overrightarrow 0$,則λ=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在直角梯形ABCD中,∠ADC=∠BAD=90°,AB=AD=1,CD=2,平面SAD⊥平面ABCD,平面SDC⊥平面ABCD,SD=$\sqrt{3}$,在線段SA上取一點(diǎn)E(不含端點(diǎn))使EC=AC,截面CDE交SB于點(diǎn)F.
(1)求證:EF∥CD;
(2)求三棱錐S-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)A(-1,2),B(1,-3),點(diǎn)P在線段AB的延長(zhǎng)線上,且$\frac{|\overrightarrow{AP}|}{|\overrightarrow{PB}|}$=3,則點(diǎn)P的坐標(biāo)為( 。
A.(3,-$\frac{11}{2}$)B.($\frac{1}{2}$,-$\frac{11}{4}$)C.(2,-$\frac{11}{2}$)D.($\frac{1}{2}$,-$\frac{7}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},則M∪N=( 。
A.{x|x≤3}B.{x|2<x<3}C.{x|-1≤x≤3}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),P是雙曲線在第一象限上的點(diǎn)且滿(mǎn)足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點(diǎn)N,又點(diǎn)M滿(mǎn)足$\overrightarrow{MO}$=$\overrightarrow{OP}$且∠MF2N=120°,則雙曲線C的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知M是拋物線C:y2=2px(p>0)上一點(diǎn),F(xiàn)是拋物線的焦點(diǎn),∠MFx=60°且|FM|=4.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知點(diǎn)P在y軸正半軸,直線PF交拋物線C于A(x1,y1)、B(x2,y2)兩點(diǎn),其中y1>0,y2<0,試問(wèn)$\frac{|PA|}{|AF|}$-$\frac{|PB|}{|BF|}$是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一個(gè)由半圓錐和平放的直三棱柱(側(cè)棱垂直于底面的三棱柱)組成的幾何體,其三視圖如圖所示,則該幾何體的體積為( 。
A.1+$\frac{π}{3}$B.1+$\frac{π}{6}$C.$\frac{2}{3}$+$\frac{π}{3}$D.$\frac{2}{3}$+$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案