2.已知直線l的方向向量$\overrightarrow a=(1,1,0)$,平面α的一個法向量為$\overrightarrow n=(1,1,-\sqrt{6})$,則直線l與平面α所成的角為( 。
A.120°B.60°C.30°D.150°

分析 利用面積向量的數(shù)量積,直接求解直線l與平面α所成的角的正弦值即可得出結果.

解答 解:直線l的方向向量$\overrightarrow a=(1,1,0)$,平面α的一個法向量為$\overrightarrow n=(1,1,-\sqrt{6})$,
直線l與平面α所成的角的正弦值=|cos<$\overrightarrow{a}$,$\overrightarrow{n}$>|=$|\frac{\overrightarrow{a}•\overrightarrow{n}}{|\overrightarrow{a}||\overrightarrow{n}|}|$=$|\frac{2}{\sqrt{2}•\sqrt{1+1+6}}|$=$\frac{1}{2}$.
直線l與平面α所成的角為:30°.
故選:C.

點評 本題考查了線面幾角的計算公式、向量夾角公式、數(shù)量積運算性質,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.設F1,F(xiàn)2分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點,M是橢圓C上一點,且直線MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為$\frac{3}{4}$,求C的離心率;
(2)若直線MN在y軸上的截距為2,且MN=5F1N,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=(x+b)lnx,g(x)=alnx+$\frac{1-a}{2}{x^2}$-x(a≠1),已知曲線y=f(x)在點(1,f(1))處的切線與直線x+2y=0垂直.
(1)求b的值;
(2)若對任意x≥1,都有g(x)>$\frac{a}{a-1}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓長軸長為4,焦點 F1(-1,0),F(xiàn)2(1,0),求橢圓標準方程和離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(α)=sinα•cosα.
(1)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(2)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓x2+(m+3)y2=m,(m>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及橢圓長軸、焦點坐標、頂點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于給定的直線l和平面a,在平面a內總存在直線m與直線l(  )
A.平行B.相交C.垂直D.異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,已知棱長為4的正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn)分別是棱A1D1,A1B1,D1C1,B1C1的中點,求證:平面AMN∥平面EFBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.將45(6)改寫成十進制數(shù)為29(10)

查看答案和解析>>

同步練習冊答案