已知直線過橢圓的右焦點(diǎn)F,拋物線:的焦點(diǎn)為橢圓的上頂點(diǎn),且直線交橢圓于、兩點(diǎn),點(diǎn)、F、 在直線上的射影依次為點(diǎn)、、.
(1)求橢圓的方程;
(2)若直線交y軸于點(diǎn),且,當(dāng)變化時,探求
的值是否為定值?若是,求出的值,否則,說明理由;
(3)連接、,試探索當(dāng)變化時,直線與是否相交于定點(diǎn)?
解:(Ⅰ)易知橢圓右焦點(diǎn)∴,拋物線的焦點(diǎn)坐標(biāo)
橢圓的方程 ……………4分
(Ⅱ)易知,且與軸交于,設(shè)直線交橢圓于
由∴
∴……………6分
又由
同理∴
∵ ∴ ……9分
所以,當(dāng)變化時, 的值為定值; ……………10分
(Ⅲ)先探索,當(dāng)時,直線軸,則為矩形,由對稱性知,
與相交 的中點(diǎn),且,
猜想:當(dāng)變化時,與相交于定點(diǎn) ……………11分
證明:由(Ⅱ)知,∴當(dāng)變化時,首先證直線過定點(diǎn),
方法1)∵,當(dāng)時,
∴點(diǎn)在直線上,
同理可證,點(diǎn)也在直線上;∴當(dāng)變化時,與相交于定點(diǎn)………14分
方法2)∵
∴ ∴、、三點(diǎn)共線,同理可得、、也三點(diǎn)共線;
∴當(dāng)變化時,與相交于定點(diǎn) ……………14
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏石嘴山市平羅中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com