考點(diǎn):函數(shù)解析式的求解及常用方法
專(zhuān)題:計(jì)算題,證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(-x)=-f(x),f(x)=log
2(x+1)+alog
2(1-x),可化出(a+1)(log
2(x+1)+log
2(1-x))=0;從而可解得.
(2)f(
)=log
2(
+1)-log
2(1-
)=log
2(a+b+ab+1)-log
2(1+ab-a-b)化簡(jiǎn)可得.
解答:
解:(1)∵f(-x)=-f(x),
∴l(xiāng)og
2(x+1)+alog
2(1-x)+log
2(-x+1)+alog
2(1+x)=0,
(a+1)(log
2(x+1)+log
2(1-x))=0,
則a=-1,
則f(x)=log
2(x+1)-log
2(1-x),(-1<x<1)
(2)證明:f(
)=log
2(
+1)-log
2(1-
)
=log
2(a+b+ab+1)-log
2(1+ab-a-b)
=log
2(a+1)(b+1)-log
2(1-a)(1-b)
=(log
2(a+1)-log
2(1-a))+(log
2(b+1)-log
2(1-b))
=f(a)+f(b).
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性的應(yīng)用及學(xué)生的化簡(jiǎn)能力,屬于中檔題.