【題目】設(shè)函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )= .
(1)求ω和φ的值;
(2)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象.
【答案】
(1)解:周期T= =π,∴ω=2,
∵f( )=cos( φ)=cos( +φ)=﹣sinφ= .
∵﹣ <φ<0∴φ=﹣
(2)解:由(1)知f(x)=cos(2x﹣ ),列表如下:
2x﹣ | ﹣ | 0 | π | |||
x | 0 | π | ||||
f(x) | 1 | 0 | ﹣1 | 0 |
在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象如下:
【解析】(1)由周期公式T= =π,可得ω=2,由f( )=cos( φ)=cos( +φ)=﹣sinφ= 及﹣ <φ<0可得φ=﹣ .(2)列表,描點即用五點法作出函數(shù)y=cos(2x﹣ )的圖象.
【考點精析】關(guān)于本題考查的五點法作函數(shù)y=Asin(ωx+φ)的圖象,需要了解描點法及其特例—五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線)才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M、N分別為CD和A1D1的中點,那么異面直線AM與BN 所成的角是( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校組織學(xué)生參加某項比賽,參賽選手必須有很好的語言表達能力和文字組織能力.學(xué)校對10位已入圍的學(xué)生進行語言表達能力和文字組織能力的測試,測試成績分為三個等級,其統(tǒng)計結(jié)果如下表:
語言表達能力 文字組織能力 |
|
| |
| 2 | 2 | 0 |
| 1 |
| 1 |
| 0 | 1 |
|
由于部分數(shù)據(jù)丟失,只知道從這10位參加測試的學(xué)生中隨機抽取一位,抽到語言表達能力或文字組織能力為的學(xué)生的概率為.
(Ⅰ)求, 的值;
(Ⅱ)從測試成績均為或 的學(xué)生中任意抽取2位,求其中至少有一位語言表達能力或文字組織能力為的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,再把圖象向左平移 個單位,這時對應(yīng)于這個圖象的解析式為( )
A.y=cos2x
B.y=﹣sin2x
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標系 中,圓錐曲線 的參數(shù)方程為 ( 為參數(shù)),定點 , 是圓錐曲線 的左、右焦點.
(1)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求經(jīng)過點 且平行于直線 的直線 的極坐標方程;
(2)設(shè)(1)中直線 與圓錐曲線 交于 兩點,求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝數(shù)學(xué)家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分數(shù)來表示數(shù)值的算法,其理論依據(jù)是:設(shè)實數(shù)x的不足近似值和過剩近似值分別為 和 (a,b,c,d∈N*),則 是x的更為精確的不足近似值或過剩近似值.我們知道π=3.14159…,若令 <π< ,則第一次用“調(diào)日法”后得 是π的更為精確的過剩近似值,即 <π< ,若每次都取最簡分數(shù),那么第四次用“調(diào)日法”后可得π的近似分數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為梯形,PD⊥底面ABCD,AB∥CD,AD⊥CD,AD=AB=1,BC=.
(Ⅰ)求證:平面PBD⊥平面PBC;
(Ⅱ)設(shè)H為CD上一點,滿足=2,若直線PC與平面PBD所成的角的正切值為,求二面角H-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某批次的某種燈泡個,對其壽命進行追蹤調(diào)查,將結(jié)果列成頻率分布表如下,根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命 (天) | 頻數(shù) | 頻率 |
合計 |
(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;
(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;
(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結(jié)果相同,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com