設(shè)f(x)=x2+px+q,A={x|x=f(x)},B={x|f[f(x)]=x}.
(1)求證:AB;
(2)如果A={-1,3},求B。
(1)證明略(2) B={-,-1,,3}
(1)證明: 設(shè)x0是集合A中的任一元素,即有x0∈A.
∵A={x|x=f(x)},∴x0=f(x0).
即有f[f(x0)]=f(x0)=x0,∴x0∈B,故AB.
(2)證明:∵A={-1,3}={x|x2+px+q=x},
∴方程x2+(p-1)x+q=0有兩根-1和3,應(yīng)用韋達(dá)定理,得
∴f(x)=x2-x-3.
于是集合B的元素是方程f[f(x)]=x,
也即(x2-x-3)2-(x2-x-3)-3=x (*) 的根.
將方程(*)變形,得(x2-x-3)2-x2=0
解得x=1,3,,-.
故B={-,-1,,3}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a | x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
OA |
OB |
3 |
n |
π |
3 |
π |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
8 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
x |
1 |
3 |
2a |
x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江蘇省泰州中學(xué)高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分16分)設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=x2(1-x).
(Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;
(Ⅱ)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤;
(Ⅲ)對(duì)于函數(shù)y=f(x)(x∈[0,+∞,若在它的圖象上存在點(diǎn)P,使經(jīng)過點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com